АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Показатели тесноты корреляционных связей. Корреляционное отношение

Одним из центральных вопросов, решаемых с помощью корреляционного метода, является определение и оценка количественной меры тесноты связи между факторными и результативными признаками.

При решении однофакторного или многофакторного корреляционного комплекса универсальным показателем тесноты взаимосвязи между изучаемыми признаками считается корреляционное отношение, позволяющее довольно точно измерить и оценить влияние факторных признаков на признаки- результаты при любой форме корреляционной зависимости.

Корреляционное отношение –– показатель, который можно рассчитать для простой или множественной корреляции на базе данных, получаемых в процессе решения дисперсионного комплекса:

, (11.1)

где - корреляционное отношение;

Wф — объем систематической (факторной) вариации;

Wобщ — объем общей вариации признака-результата.

Корреляционное отношение может обеспечить довольно высокий уровень точности количественного измерения тесноты взаимосвязи между изучаемыми признаками, так как оно позволяет полнее «уловить» все колебания, вызванные влиянием факторных признаков на результат. Вместе с этим преимуществом корреляционное отношение содержит существенный недостаток: имея всегда положительное значение, при обратной корреляционной зависимости оно не показывает направление связи между изучаемыми признаками. Поэтому для выявления направленности корреляционной зависимости между признаками-факторами и признаками-результатами нередко приходится использовать графический прием.

При корреляционных связях обычно изучаются взаимоотношения разноименных величин. Поэтому приходится сопоставлять не линейные отклонения индивидуальных вариант, а их преобразованные значения, нередко выраженные в отвлеченных числах.


Дата добавления: 2016-06-06 | Просмотры: 2175 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.002 сек.)