АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Математическая модель компенсации диабета
Эта глава адресована читателям, которые владеют необходимым математическим аппаратом, чтобы разобраться с изложенными в ней соображениями. Хотя мы напишем не слишком много формул, однако будем комментировать процесс компенсации диабета на математическом языке, дабы знающие и понимающие его могли лучше уяснить ситуацию.
Итак, в качестве эталона мы имеем здоровую поджелудочную железу — систему, автоматически и с высокой точностью реагирующую на концентрацию глюкозы в крови и секретирующую необходимое количество инсулина. Соответствующую кривую естественной суточной секреции инсулина обозначим F=F(t), где t — время, а F — содержание инсулина в крови. Пример функции F(t) дан на рисунке 8.2, график 1. Конкретный вид этой кривой зависит от двух факторов, изменяющих сахар крови: от физической нагрузки и поступления в организм углеводов (их количества, времени их поступления и скорости всасывания). F(t) — эталонная функция, характеризующая здоровую поджелудочную железу.
Рассмотрим случай диабета I типа, когда естественная секреция инсулина отсутствует, и отбросим вначале факторы физической нагрузки и неоднозначности действия внешнего инсулина. Примем также некую идеальную модель питания, когда человек, не испытывающий физических нагрузок (кроме самых необходимых и минимальных), ест в строго определенное время четыре или пять раз в сутки и за каждый прием пищи поглощает строго определенное количество углеводов. В этих идеализированных условиях мы имеем единственную переменную величину: набор искусственных инсулинов, каждый из которых характеризуется определенными функциями действия f(t0, t), где t0 — параметр, определяющий время введения инсулина, а t — текущее время. Примеры этих функций представлены на рисунке 8.2, на графиках 2–8, при t0=0. Набор данных функций, который мы обозначим Ф, конечен, но их имеется не пятьдесят разных видов, а гораздо больше: напомним еще раз, что с точки зрения математики функции для одного и того же инсулина, введенного в разное время, подобны, но сдвинуты по оси времени (то есть с формальной точки зрения это разные функции). Сколько же их? Если считать, что инъекции инсулина разрешены только в дневные часы и могут делаться в любой из временных точек с 8 утра до 23 вечера со скважностью один час, то каждая из приведенных на рисунке 8.2 функций (при t=0, что соответствует 8 утра) порождает еще пятнадцать, сдвинутых по оси t на один, два и так далее часа. Эта дискретизация, разумеется, условна, но позволяет оценить общее количество функций базиса — в данном случае их порядка восьмисот. Чтобы окончательно формализовать обозначение базисных функций, вынесем зависимость от параметра t0 из скобок и запишем Ф = { fj(t) }.
Наша задача: с помощью двух — семи функций из набора Ф аппроксимировать эталонную функцию F(t): где Сj — вес функции fj или, иными словами, j-я доза соответствующего инсулина Напомним, что проблема аппроксимации некой реальной функциональной зависимости с помощью набора базисных функций (обычно заданных математически) является широко распространенной задачей, возникающей в науке и технике. Она решается с помощью метода наименьших квадратов (МНК), с помощью которого можно определить весовые коэффициенты С. Стандартные базисы, которые используются в этом случае — степенной ряд и ряд Фурье — позволяют минимизировать отклонение между левой и правой частями написанного выше выражения и добиться того, что эталонная функция F(t) с высокой точностью представляется с помощью суммы базисных функций, умноженных на весовые коэффициенты. Но высокая точность достигается путем суммирования большого количества членов, то есть разложения F(t) с использованием большого количества базисных функций. В нашем случае это невозможно, так как нельзя делать десятки инъекций инсулина в день.
Итак, если в разложение для F(t) включены две функции, то этот случай соответствует инсулинотерапии с двумя инъекциями пролонгированного инсулина утром и вечером; если включены семь функций, то этот случай соответствует базис-болюсной терапии, когда утром и вечером делаются инъекции смешанным инсулином и в течение дня совершаются еще три подколки «коротким» инсулином. Формально, как уже отмечалось, задача сводится к определению коэффициентов Сj с помощью метода наименьших квадратов и может быть легко решена.
Однако насколько хорошим будет такое решение? Мы могли бы вычислить отклонение между эталонной функцией и аппроксимирующей ее, но в этом нет необходимости: мы сразу можем сказать, что в случае базис-болюсной терапии качество будет вполне приемлемым, а при двух инъекциях пролонгированного инсулина — более низким. Данный вывод следует из вида функций нашего базиса и вида F(t): эталонная функция содержит резкие пики и области плавного «фона», и ее никак нельзя удовлетворительно аппроксимировать парой функций с широкими горбами (см. рис. 8.2, график 3).
Получается, что базис-болюсная терапия — наилучший из выходов? Очень сомнительно! Напомним, что мы рассматривали задачу аппроксимации в идеализированных условиях, а теперь нужно ввести реальные параметры: неоднозначность действия инсулина (зависимость от точки инъекции, температуры и прочих неясных обстоятельств); неизбежные ошибки в питании (ошибки в математическом смысле — то есть разброс количества поглощенных углеводов и скоростей их всасывания); физические нагрузки, влияние которых невозможно учесть с достаточной точностью. Три указанных фактора в каждый момент времени являются величинами неопределенными, но к тому же они действуют одновременно, и влияние их суперпозиции — это, образно говоря, неопределенность в квадрате.
Мы можем учесть их только эмпирически — и, разумеется, довольно грубо.
Итак, каковы же выводы? 1. Мы в принципе не можем добиться стопроцентной компенсации диабета «ручным способом», поскольку эта задача сводится к попытке аппроксимации естественной (но уже не эталонной!) функции F(t), которая строго не определена и зависит от параметров, которые нам в точности неизвестны — питания и физической нагрузки. Функции базиса, с помощью которых мы пытаемся приблизиться к F(t), тоже «плывут», они тоже строго не определены (неоднозначность действия внешнего инсулина). К тому же, по условиям задачи, мы не можем использовать много базисных функций — ведь каждый член в приведенном выше разложении означает укол шприцом.
2. В виду неясности ситуации, описанной в предыдущем пункте, мы не можем качественно промоделировать своими силами, с помощью инсулина, диеты и режима, тонкий механизм функционирования поджелудочной железы. Условно говоря, там, где нужен компьютер, мы крутим рукоять старинного арифмометра.
3. Но арифмометр тоже способен давать результаты — пусть не с такой скоростью и не с такой точностью, как современный компьютер. Мы не можем добиться идеальной компенсации диабета, но мы способны приблизиться к ней — не предельно близко, но все же на такое расстояние, когда риск из-за ошибок аппроксимации минимален — при существующем уровне медицины. Совершенно очевидно, что ошибки аппроксимации будут тем меньше, чем меньше влияние неопределенных и неучтенных факторов, которыми мы в какой-то степени способны управлять, — питания и физических нагрузок. Если хотите, считайте данный вывод математическим обоснованием необходимости диеты, режима и всех процедур контороля заболевания.
Сейчас дела обстоят именно так, но это не означает, что песня закончилась минорной нотой.
Дата добавления: 2015-07-23 | Просмотры: 590 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 |
|