АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

БИЛЕТ№45

1. - Этапы развития опухоли - В патогенезе опухолевого роста различают три этапа: трансформацию здоровой клетки в опухолевую (инициация), промоцию («подстрекательство») и прогрессию опухоли.

Трансформация заключается в приобретении исходной здоровой клеткой способности беспредельно размножаться и передаче ее дочерним клеткам по наследству. Трансформация может происходить, по-видимому, двумя путями — мутационным и эпигеномным. Оба пути представляют механизм нарушения регуляции клеточного деления. Поэтому понимание механизмов канцерогенеза прямо связано с центральной проблемой современной биологии клетки - сущностью клеточного деления и регуляции этого процесса.

Ведущим биохимическим процессом, обеспечивающим клеточное деление, является репликация ДНК всего генома клетки в фазе s митотического цикла. Этот процесс осуществляется мультиферментным комплексом и начинается с появлением в клетке в фазе G1 специального инициатора клеточного деления. Инициация клеточного деления и начало редупликации ДНК зависят от синтеза белка в фазе G1. Введенный в этот период ингибитор синтеза белка циклогексимид блокирует начало синтеза ДНК, а введенный позжe влияет на начавшуюся редупликацию.

Появление в клетке инициатора и начало клеточного деления является результатом дерепрессии гена, кодирующего этот инициатор. Следовательно, обеспечение регуляции функции гена-инициатора клеточного деления дает возможность регулировать включение и выключение размножения данной клетки. Ограничение нормальной клетки в числе и скорости делений объясняется тем, что в каждой клетке существует своя собственная система регуляции деления, состоящая из специальных регуляторных генов. Выше был описан механизм промоции, заключающийся в прямом встраивании промоторного гена в геном клетки, например, онкогена туе.

Прогрессия — третий этап механизма канцерогенеза. Под прогрессией понимают стойкие качественные изменения свойств опухоли, преимущественно в сторону малигнизации, возникающие под действием нескольких факторов:

1. В первичный канцерогенез, как правило, вовлекается не одна клетка, а несколько, что способствует формированию в развивающейся опухоли нескольких сублиний клеток. В растущей опухоли под воздействием изменяющихся условий (питание, кровоснабжение, иннервация) ее роста постоянно совершается отбор наиболее жизнеспособных клеток. Определенные клетки получают преимущество. При росте опухолевой ткани в организме изменяется гормональная регуляция, наконец, возможна выработка антител против клеток, имеющихся в какой-либо сублинии. В результате с течением времени получает преимущество какая-нибудь из сублиний опухолевых клеток, которая вначале составляла меньшинство.

2. Изменение генотипа и фенотипа клеток, приводящее к прогрессии, может быть связано с продолжением действия на геном опухолевых клеток канцерогенного фактора.

3. Спонтанные мутации опухолевых клеток при снижении в них активности репаративных ферментов.

4. Приобретение опухолевыми клетками новых свойств, связанных с суперинфекцией опухолеродными и неопухолеродными вирусами, облегченной в опухолевых клетках.

С практической точки зрения важно, что прогрессия в большинстве случаев приводит к увеличению скорости роста опухоли. Вследствие гетерогенности опухолевых клеток при химиотерапии опухолей наблюдается отбор клеток, устойчивых к действию лекарственных средств.

2. - Гемолитические анемии: общая характеристика - Термин «гемолитическая анемия» (ГА) определяет такие состояния, когда имеет место стойкое (хроническая ГА) или массированное (острая ГА) преобладание разрушения эритроцитов над их формированием.

ГА бывают первичными в частности — наследственными заболеваниями (например, серпрвиддрклеточнад ГА). Но, нередко усиленный гемолиз и ГА — вторичные проявлениями основного заболевания: при лимфоме, лей-козах, инфарктах, аутоиммунных болезнях.

При гемолитических анемиях отмечается преждевременное разрушение эритроцитов, накопление продуктов метаболизма НЬ, заметное возрастание эритропоэза в костном мозге. Синдром усиленного гемолиза и синдром щиления эритропоэза очень важны для распознавания ГА.

Преждевременное разрушение эрит-роцитов осуществляйся, преимуществен-но,1^слетки системы мононуклеарных фагоцитов (экстраваскулярный, внесо-судистый гемолиз). В некоторых случаях лизис эритроцитов происходит в сосудистом компартменте (эндоваскулярныйу внутрисосудистый гемолиз).

Усиленный гемолиз имеет место при большинстве приобретенных гемолитических анемий, тогда как наследственные формы имеют, чаще всего, усиленный внесосу-дистый гемолиз.

Иногда говорят, что к усилению внесосудистого гемолиза ведут эндоэритроцитарные причины (различные внутренние для красной клетки аномалии, способствующие ее раннему аутофаго-цитозу). К усилению внутрисосудисто-го гемолиза ведут факторы экзоэритро-цитарного характера, способные разрушить красную клетку непосредственно в кровотоке.

Синтетическую классификацию анемий данного вида по Кришна Дасу (1987) и Котрану и соавт. (1995):

I. Эндоэритроцитарные (с внутренними аномалиями эритроцитов): Наследственные

1. Дефекты мембраны эритроцита (эритроцитопатии или мембрано-патии)

а. Нарушение цитоскелета мембраны: сфероцитоз, эллиптоци-тоз

2. Ферментопатии (энзимопатии)

a. Дефицит ферментов пентозного цикла: глюкозо-6-фосфат дегид-рогеназа, глутатионсинтетаза

b. Дефицит ферментов гликолиза: пируваткиназа, гексокиназа

3. Гемоглобинопатии:

a. Дефицит синтеза глобина: талас-семии

b. Структурные анормальности синтеза глобина: серповидноклеточ-ная анемия, нестабильные гемог-лобины

4. Вследствие соматической клональ-ной мутации: Пароксизмальная ночная гемоглобинурия (ПНГ, болезнь Маркиафава-Микели3)

II. Экзоэритроцитарные (от действия факторов, лежащих вне самого эритро-цита):

Приобретенные

1. Иммунные (антитело-опосредованные):

a. изоиммунные: переливания несовместимой крови, erythroblas-tosis fetalis

b. аутоиммунные гемолитические анемии (с тепловыми и холодо-выми антителами)

2. Механическое повреждение эритроцитов

a. Микроангиопатическая гемолитическая анемия: тромботичес-кая тромбоцитопеническая пурпура, тромбо-геморрагический синдром, гемолитический уремический синдром

b. При протезировании сосудов и клапанов сердца

c. «Маршевая» ГА

3. Токсические:

a. Инфекционные: малярия, Clost-ridium Welchi, бартонеллез, бабе-зиоз

b. Лекарственные и другие химические (нитрофураны, фенито-ин, сульфаниламиды, муравьиная кислота).

Эритропатии. Сфероцитоз - наследственные гемолитические анемии, при которых обнаруживаются дефекты плазматической мембраны красных клеток именуются эритропатиями (эритроцитопатиями).

Анемии данной группы могут быть обусловлены гене_тиче?кидетермини-рованным дефектом белковой или липидной компоненты плазматической мембраны эритроцита. Имеются и приобретенные дефекты эритроцитарной мембраны, приводящие к ГА (при авитаминозе Е — ее липидной части, при болезни Маркиафава-Микели — ее гли-кан-инозитолфосфатидов). В данной группе наиболее клинически значимой является вторая по распространенности среди всех наследственных ГА — наследственный микросфероцитоз (болезнь Минковского-Шоффара).

 

Чаще всего снижено содержание белка спектрина. В норме он образует сеть филаментов на внутренней поверхности, ПМ и, как бы, обеспечивает «каркас» двояковогнутой плазматической мембраны Эр. Дефект нарушает прикрепление к спектрину другого белка — анкирина. Бывают и случаи, связанные с дефектом самого анкирина. Реже болезнь вызвана дефектами других под-мембранных белков цитоскелета — протеина 4.2 и даже белка третьей полосы.

Цитоскелетный дефект вызывает снижение способности спектрина — полиме-ризоваться, а эритроцитов — удерживать двояковогнутую форму, увеличивает свя-зывание кальция цитоскелетными белками; происходит патогномоничное для болезни значительное уменьшение осмотической стойкости эритроцита.

Усиленное проникновение катионов натрия и кальция внутрь Эр перегружает калий-натриевый насос и кальциевые градиентсоздающие системы, это увеличивает затраты АТФ, делает энергетический метаболизм красной клетки менее эффективным. Гликолиз усиливается.

Гемоглобинопатии (гемоглобинозы)

Наследственные аномалии, связанные с нарушениями структуры глобина называют гемоглобинозами. Те из них, которые сопровождаются выраженными ГА и иными клиническими синдромами принято именовать гемоглобино-патиями.

Хронические ГА, вызванные укорочением сроков жизни эритроцитов из-за наличия в последних мутантного гемоглобина

Нормальный гемоглобин взрослого представлен тремя фракциями:

• НЬА-на97%;

• НЬ А2 - около 2%;

• НЬ F-около 1%.

В ходе онтогенеза, гены этих комплексов последовательно активируются и выключаются, обусловливая выработку эмбриональных, фетальных и взрослых гемоглобинов.

Выделяют двемэсновные группы наследственных нарушений выработки гемоглобина: одиночные аминокислотные замены в структуре глобина (1) и уменьшение выработки глобиновых цепей одного или более типов (2). Первое нарушение наиболее ярко проявляется при СКА (серповидно-клеточной анемии), второе представлено гетерогенной группой состояний под общим термином «талассемия». Во многих группах населения встречаются оба типа наследственных нарушений гемоглобина, поэтому часто один и тот же больной наследует как структурные варианты гемоглобина, так и какую-либо форму талассемии.

Серповидноклеточная анемия – Sобразные эритроциты.

Талассемии — это группа гемоглобинопатии в основе которых лежит нару-шение гетеерополимеризации цепей гемоглобина, приводящих к дефециту НбА. Эритроидные клетки больных образуют гемоглобины, полностью или частично лишенные а-цепей, либо в-цепей, Соответственно, различают а-тпалассемии и в-талассемии.

При талассемиях мутации располагаются не в экзонах (то есть структурных генах цепей глобина), а в интронах, то есть генах-регуляторах, управляющих онтогенетическим переключением синтеза с гена одной из цепей, на ген другой (см. выше). Поэтому цепи глобина при талассемиях не имеют аминокислотных замен. Нарушено их «спаривание» друг с другом.

Эритроцитарные энзимопатии - гемолитические анемии, вызванные ферментативными дефектами эритроцитов называются ферментопатямии (энзимопати-ями).

Несмотря на особенности своей морфологии (отсутствие ядра, митохондрий, рибосом...), эритроцит представляет собой метаболически активную живую постклеточную структуру.

Большая часть глюкозы эритроцита метаболизирует в ходе гликолиза (89-97 процентов), покрывая потребности клетки в АТФ, остальная глюкоза расщепляется в реакциях пентозного цикла (3-11 %), обеспечивающего образование необ-ходимого количества НАДФН.

Водород Н ДФН обеспечивает, прежде всего, >е^дествование восстановленной формы глютатиона, а также сохранение активности каталазы. Восстановленный глютатион (GSH), тио-ловые группы которого составляют 96% общего количества SH-групп эритроцита, необходим для предохранения ряда ферментов от инактивирования и для ограждения ПМ эритроцита от действия липоперекисей, а также для предотвращения окислительной денатурации Нв. В тесной связи с данными восстановительными эквивалентами Эр использует витамины С и Е. Обычно эритроцит имеет невысокое содержание активных кислородных радикалов. Эти соединения:

• супероксидный радикал, О2;

• перекись водорода, Н2 О2;

• гидроксил-анион, ОН. Наиболее доступными для окисления структурами в эритроцитах являются ненасыщенные жирные кислоты фос-фолипидов ПМ, именно с ними могут реагировать супероксид и гидроксиль-ный радикал, с последующим образованием радикалов жирных кислот. В результате такого взаимодействия иници-ируется свободнорадикальный процесс, который способен привести к повреждению целостности ПМ эритроцита и к гемолизу (см. также т. 1,с. 185-192).

При ряде воздействий редокс-состо-яние Эр резко изменяется, окислительные процессы могут существенно активироваться, и требования к антиокси-дантным ресурсам повышаются. Это может иметь место при:

• употреблении различных лекарств-окислителей (сульфаниламиды, ле-вомицетин, примахин, нафтохино-ны, нестероидные анальгетики, производные азота);

• использовании некоторых пищевых продуктов (окисленные жиры, конские бобы);

3. – ПАНКРЕАТИТ - Воспаление поджелудочной железы нередко протекает остро и может сопровождаться развитием панкреатического шока, опасного для жизни.

В этиологии панкреатита существенное значение придают злоупотреблению алкоголем и сопровождающему его перееданию,

обильному приему жирной пищи, желчным камням и полипам протока поджелудочной железы, механическому повреждению поджелудочной железы и сфинктера печеночно-поджелудочнои ампулы при травмах и хирургических вмешательствах, инфекционному фактору (вирусный паротит и гепатит, Коксаки-вирусная и бактериальная инфекция), интоксикация, включая действие некоторых ле-карственных средств (иммунодепрессанты, тиазиды, кортикос-тероиды и др.).

В патогенезе панкреатита важную роль играют повышение секреции панкреатического сока, нарушение оттока секрета, повышение давления в протоке поджелудочной железы, попадание в проток желчи и дуоденального химуса (содержащего энтерокина-зу), нарушение микроциркуляции, трофики и барьерных свойств экзогенных панкреоцитов. Основным звеном патогенеза панкреатита является преждевременная активация ферментов (трипсина, кал-ликреина, эластазы, фосфолипазы А) непосредственно в протоках и клетках железы, которая происходит под действием энтерокиназы, желчи или аутокаталитически, при повреждении панкреацитов. Следствием этого являются аутолиз ткани железы, некроз отдельных ее участков и образование токсических (лизолеци-тин) и биологически активных веществ, в числе которых находятся кинины, обладающие мощным сосудистым и гипотензивным действием. Выход пептидаз и других панкреатических ферментов риводит к тяжелым расстройствам гемодинамики, дыхания и других жизненно важных функций {панкреатический шок). Важную роль в патогенезе указанных нарушений играет изменение равновесия между протеолитическими ферментами и их ингибиторами. Последние вырабатываются самой поджелудочной железой и другими органами (слюнные железы, легкие) и с успехом применяются для лечения панкреатита.

Определенное значение в патогенезе панкреатита, особенно хронического, принадлежит нарушениям кровообращения в поджелудочной железе (при атеросклерозе, гипертонической болезни), а также иммунологическому (аутоаллергическому) фактору, о чем свидетельствует обнаружение противопанкреатических антител в крови у некоторых лиц, больных холецистопанкреатитом.

4. - Цинга и действие мегадоз витамина С - Цинга (скорбут, детская форма фигурирует также под эпонимом болезнь Мёллера-Бар-лоу) — это один из самых старых и массовых авитаминозов, известных человечеству.

Витамин С - Витаминное средство, оказывает метаболическое действие, не образуется в организме человека, а поступает только с пищей. Участвует в регулировании окислительно-восстановительных процессов, углеводного обмена, свертываемости крови, регенерации тканей; повышает устойчивость организма к инфекциям, уменьшает сосудистую проницаемость, снижает потребность в витаминах B1, B2, А, Е, фолиевой кислоте, пантотеновой кислоте.

Участвует в метаболизме фенилаланина, тирозина, фолиевой кислоты, норэпинефрина, гистамина, железа, усвоении углеводов, синтезе липидов, белков, карнитина, иммунных реакциях, гидроксилировании серотонина, усиливает абсорбцию негемового железа.

Обладает антиагрегантными и выраженными антиоксидантными свойствами.

Регулирует транспорт H+ во многих биохимических реакциях, улучшает использование глюкозы в цикле трикарбоновых кислот, участвует в образовании тетрагидрофолиевой кислоты и регенерации тканей, синтезе стероидных гормонов, коллагена, проколлагена. Поддерживает коллоидное состояние межклеточного вещества и нормальную проницаемость капилляров (угнетает гиалуронидазу). Активирует протеолитические ферменты, участвует в обмене ароматических аминокислот, пигментов и холестерина, способствует накоплению в печени гликогена. За счёт активации дыхательных ферментов в печени усиливает её дезинтоксикационную и белковообразовательную функции, повышает синтез протромбина.

Улучшает желчеотделение, восстанавливает внешнесекреторную функцию поджелудочной железы и инкреторную — щитовидной.

Регулирует иммунологические реакции (активирует синтез антител, С3-компонента комплемента, интерферона), способствует фагоцитозу, повышает сопротивляемость организма инфекциям.

Тормозит высвобождение и ускоряет деградацию гистамина, угнетает образование Pg и других медиаторов воспаления и аллергических реакций.

В низких дозах (150—250 мг/сут внутрь) улучшает комплексообразующую функцию дефероксамина при хронической интоксикации препаратами Fe, что ведёт к усилению экскреции последнего.

Фармакокинетика - Абсорбируется в ЖКТ (преимущественно в тонкой кишке). С увеличением дозы до 200 мг всасывается до 140 мг (70 %); при дальнейшем повышении дозы всасывание уменьшается (50—20 %). Связь с белками плазмы — 25 %. Заболевания ЖКТ (язвенная болезнь желудка и 12-перстной кишки, запоры или диарея, глистная инвазия, лямблиоз), употребление свежих фруктовых и овощных соков, щелочного питья уменьшают всасывание аскорбата в кишечнике.

Концентрация аскорбиновой кислоты в плазме в норме составляет приблизительно 10—20 мкг/мл, запасы в организме — около 1,5 г при приёме ежедневных рекомендуемых доз и 2,5 г при приёме 200 мг/сут. TCmax после приема внутрь — 4 ч.

Легко проникает в лейкоциты, тромбоциты, а затем — во все ткани; наибольшая концентрация достигается в железистых органах, лейкоцитах, печени и хрусталике глаза; депонируется в задней доле гипофиза, коре надпочечников, глазном эпителии, межуточных клетках семенных желёз, яичниках, печени, селезёнке, поджелудочной железе, лёгких, почках, стенке кишечника, сердце, мышцах, щитовидной железе; проникает через плаценту. Концентрация аскорбиновой кислоты в лейкоцитах и тромбоцитах выше, чем в эритроцитах и в плазме. При дефицитных состояниях концентрация в лейкоцитах снижается позднее и более медленно и рассматривается как лучший критерий оценки дефицита, чем концентрация в плазме.

Метаболизируется преимущественно в печени в дезоксиаскорбиновую и далее в щавелевоуксусную и дикетогулоновую кислоты.

Выводится почками, через кишечник, с потом, грудным молоком в виде неизменённого аскорбата и метаболитов. При назначении высоких доз скорость выведения резко усиливается. Курение и употребление этанола ускоряют разрушение аскорбиновой кислоты (превращение в неактивные метаболиты), резко снижая запасы в организме.

Витамин Е - жирорастворимый витамин, являющийся важным антиоксидантом. В природе существует в восьми различных формах (изомерах), отличающихся биологической активностью и исполняемыми в теле функциями. Как антиоксидант, защищает организм от вредоносного влияния токсинов, молочной кислоты[источник не указан 30 дней]. Его нехватка может служить одной из причин вялости и малокровия. Содержится в растительном и сливочном маслах, зелени, молоке, яйцах, печени, мясе, а также зародышах злаковых. В качестве пищевой добавки обозначается как E307 (?-токоферол), E308 (?-токоферол) и E309 (?-токоферол). Витамин Е - жирорастворимый витамин, т.е. он растворяется и остается в жировых тканях тела, тем самым уменьшая потребность в потреблении больших количеств витамина. Признаки дефицита жирорастворимых витаминов проявляются не сразу, поэтому его трудно диагностировать. Жирорастворимыми витаминами не следует увлекаться, поскольку токсичные реакции могут вызвать меньшие дозы RDA (рекомендованных норма витаминов) жирорастворимых, чем водорастворимых витаминов.

Витамин Е присутствует во многих продуктах, особенно им богаты некоторые жиры и масла. Витамин Е предотвращает образование кровяных сгустков и способствует их рассасыванию. Он также улучшает фертильность, уменьшает и предотвращает приливы в климактерический период. Витамин Е также используется в косметологии для сохранения молодости кожи, он способствует заживлению кожи и уменьшает риск образования рубцовой ткани. Кроме того, токоферол помогает при лечении экземы, язв кожи, герпеса и лишая. Витамин Е очень важен для красных кровяных телец, он улучшает дыхание клеток и укрепляет выносливость.

Токоферол - главный питательный антиоксидант. Кроме витамина Е, из антиоксидантов наиболее известны витамин С и бета-каротин. Антиоксидант помогает организму справиться с нестабильными химикатами, которые называются «свободными радикалами». Свободные радикалы - побочный продукт процесса преобразования пищи в энергию, которые со временем накапливаются в организме. Они увеличивают уязвимость клеток (т.н. окислительный стресс) вследствие процесса старения и общего упадка центральной нервной системы и иммунной системы. Кроме того, свободные радикалы способствуют развитию разных патологических состояний, например, рака, сердечных заболеваний, артрита и т.п. Более, антиоксиданты помогают предотвратить превращение нитратов, содержащихся в табачном дыме, беконе и некоторых овощах, в канцерогенные вещества.

Недостаточность липоевой кислоты

Липоевая или тиоктовая кислота (рациональное название — 6,8-дитиооктоновая кислота — см. рис. 80) известна, как водорастворимый витамин, в двух формах — ос-липоевой кислоты и ос-липоамида. В организме биологически активной жирорастворимой формой витамина служит его дигидролипоил-лизил.

Данный витамин является коферментом энзима дигидролипоил-трансацетилазы при окислительном декарбоксилировании пиру-вата и других ос-кетокислот, входит в состав коэнзима А. Этот витамин, легко проникающий через гематоэнцефалический барьер, считается также тиоловым антиоксидантом, сберегающим токоферолы и аскорбиновую кислоту. Липоат необратимо связывает тяжелые металлы в водорастворимые комплексы, выводимые почками. Он обладает липотроп-ными средствами. Активизация использования глюкозы и липидов в реакциях окисления, наступающая при действии липоевой кислоты, приводит к восстановлению запасов гликогена в печени, понижению уровня глюкозы и липопротеидов в крови. Потребность в липоевой кислоте точно не определена, лечебные дозы приняты на уровне 4— 25 мг/сутки. Витамин содержат и животные, и растительные продукты (в мкг/кг — печень, сердце и почки — более 1000; говядина -— 725; молоко — около 900; рис — 220; капуста -115). Весьма богаты тиоктовой кислотой темно-зеленые листья овощей, особенно, шпината и брокколи.

Дефицит липоевой кислоты ведет к так называемому «пирувизму». Это проявляется повышением содержания пирувата и других кетокислот в крови, метаболическим ацидозом, полиневритом, мышечными спазмами. Наблюдается миокардиодистрофия. Может развиваться ожирение печени. Показана протективная роль липоевой кислоты в отношении диабетических полинейропати

 


Дата добавления: 2015-05-19 | Просмотры: 462 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.01 сек.)