АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

БИЛЕТ№49

1. – Миелолейкоз и Лимфолейкоз - При хроническом миелолейкозе в лейкограмме увеличивается количество нейтрофильных гранулоцитов — метамиелоцитов, палоч-коядерных, сегментоядерных — со сдвигом влево до миелоцитов и единичных миелобластов. Может быть повышено число эозино-фильных и базофильных гранулоцитов (эозинофильный и базо-фильный лейкоцитоз). Наблюдается миелоидная метаплазия лим-фоидной ткани. В терминальной стадии наступает властный криз, при котором в крови резко возрастает содержание бластных клеток — миелобластов, затем недифференцируемых бластов.

Острый миелобластный лейкоз (в некоторых педиатрических текстах он же обозначается как острый нелимфо-идный лейкоз) — сокращённо: ОМЛ — это группа клональных неопластических злокачественных заболеваний, при которых исходящий из костного мозга опухолевый клон принадлежит к потомству общей миелоидной полустволовой клетки и в значительной степени утратил способность к дифференциров-ке. FAB-классификация выделяет 9 подтипов ОМЛ (см. с. 360-361), которые отличаются по степени утраты способности к дифференцировке (от глубокой, до полной потери дифференцировочной потенции) и по характеру пролиферирующих потенциально бессмертных лейкозных «бластов».

Хронический лимфолейкоз характеризуется лимфоцитозом -80—98%. Лимфоциты в крови преимущественно зрелые (чаще встре- чается В-лимфоцитарный вариант лейкоза), но имеются единичные пролимфсциты и лимфобласты, а также тени Боткина—Гумпрехта (разрушенные лимфоциты). Снижено количество гранулоцитов, эритроцитов и тромбоцитов. Это обусловлено тем, что в костном мозге происходит почти тотальное замещение лимфоцитами других гемопоэтических ростков (лимфоидная метаплазия миелоидной ткани). Властный криз возникает при этой форме лейкоза в редких случаях (3-4%).

Острый лимфобластный лейкоз (ОЛЛ) — тип лейкемии, чаще всего встречающийся у детей. Он исходит из недифференцирующегося пролифери-рующего клона лимфобластов. Лейкоз-ные лимфобласты вытесняют из костного мозга и замещают в крови миело-идные элементы.

Около 75% случаев ОЛЛ представлено пре-В-клонами (L1), до 20-25% -Т-клонами, относящимися к ранним тимоцитарным стадиям дифференци-ровки, подобными клеткам лимфоблас-тной Т-лимфомы (L2), и лишь в не-скольких процентах случаев (1-2%) неопластические клоны, сходные с кле-точным субстратом лимфомы Бёркит-та, представляют собой В-клетки (L3).

При классическом рахите вследствие недостаточного поступления или образования витамина D нарушается минерализация растущих костей детского организма, они не приобретают достаточной жёсткости и заметно деформируются. Эта форма рахита возникает первично и чаще всего бывает обусловлена дефектами питания и ухода за ребёнком — D-дефицитный рахит. Однако существуют и другие варианты рахита, которые могут быть связаны как с иными заболеваниями, то есть, возникать вторично, или же входить в состав редких наследственных синдромов — это витамин D-зависимые и D-резистентные формы.

2. – Острая и Хроническая гипоксия плода и новорожденного - При острой гипоксии мобилизуются срочные компенсаторные меха-пимы, основанные на гиперфункции дыхательной, сердечно-сосудистой систем и эритрона. На уровне клеток компенсаторные механизмы связаны с активацией гликолиза. Буферные системы, реактивируемые почками и легкими, стремятся поддержать рН.

При хронической гипоксии мобилизуются долгосрочные компенсатор-ные механизмы, основанные на гипертрофии и гиперплазии в пределах дыхательной, сердечно-сосудистой систем и эритрона.

 

3. - ПАТОФИЗИОЛОГИЧЕСКИЕ СИНДРОМЫ, ОБУСЛОВЛЕННЫЕ НАРУШЕНИЕМ ЖЕЛЧЕОБРАЗОВАНИЯ И ЖЕЛЧЕВЫДЕЛЕНИЯ - Нарушения желчеобразования и желчевыделения проявляются в виде следующих синдромов: желтухи, холемии, ахолии, дисхолии.

Желтуха (icterus) - синдром, возникающий при увеличении содержания в крови билирубина и характеризующийся желтой окраской кожи, слизистых оболочек, склер в результате отложения в них желчных пигментов при нарушении желчеобразования и желчевыделения.

Классификация. В зависимости от первичной локализации пато-логического процесса, приводящего к развитию желтухи, и механизма возникновения выделяют такие виды желтухи: 1) надпеченоч-ную, вызванную повышенной продукцией билирубина, главным образом в связи с усилением распада эритроцитов (гемолитическая желтуха) и реже при нарушении плазменного транспорта билирубина 2) печеночную желтуху, обусловленную нарушением захвата, конъюгации и экскреции билирубина гепатоцитами вследствие их повреждения при различных патологических процессах, а также приобретенных и наследственных дефектах структуры гепатоцитов и ферментов, участвующих в метаболизме и транспорте билирубина в клетках печени; 3) подпеченочную желтуху (механическую), возникающую при затруднении оттока желчи по внепеченочным жел-чевыводящим путям.

Надпеченочная желтуха. К этой группе относятся: 1) гемолитическая желтуха, которая развивается в результате повышенного распада эритроцитов; 2) шунтовая гипербилирубинемия — при возрастании образования так называемого шунтового билирубина из гемоглобина незрелых форм эритроцитов (например, нормобластов костного мозга в результате неэффективного эритропоэза при В ^-дефицитной анемии) или же из гема таких протеидов, как миоглобин, цитохромы, каталаза, при обширных гематомах, инфарктах; 3) желтуха при нарушении плазменного транспорта билирубина — при разрыве связи между билирубином и альбумином некоторыми лекарственными препаратами или же нарушении образования билирубин-альбуминового комплекса вследствие резкого уменьшения со-держания альбумина в крови.

Этиология. Причины возникновения гемолитической желтухи — это те этиологические факторы, которые приводят к развитию гемолиза эритроцитов и гемолитической анемии (см. главу XVIII — «Гемолитическая анемия»).

Патогенез. При усиленном гемолизе эритроцитов в звездчатых эндотелиоцитах печени, макрофагах селезенки, костного мозга образуется столь большое количество свободного (непрямого, не-конъюгированного) билирубина, что гепатоциты печени оказываются не в состоянии полностью извлечь его из крови и связать с ури-диндифосфоглюкуроновой кислотой (относительная печеночная недостаточность). Кроме того, гемолитические яды часто являются гепатотоксическими веществами, а поражение гепатоцитов затрудняет метаболизм и транспорт билирубина в них. В крови увеличива-ется содержание неконъюгированного билирубина (непрямая ги-пербилирубинемия), который не выводится с мочой из-за своей связи с альбумином. Может возрасти уровень конъюгированного (прямого) билирубина, что обусловлено его обратной диффузией в кровь после того, как способность гепатоцита экскретировать связанный билирубин в желчь оказалась исчерпанной. *

При очень высокой непрямой гипербилирубинемии (260-550 мкмоль/л), когда не весь свободный билирубин включается в билирубин-альбуминовый комплекс, развивается так называемая ядерная желтуха (окрашивание ядер головного мозга) с поражением ядер центральной нервной системы и неврологической симптоматикой (энцефалопатия), что особенно характерно для гемолитической болезни (анемии) новорожденных при резус-несовместимости эритроцито матери и плода. Токсическое действие свободного билирубина на нервную систему может проявиться и при незначительном повышении билирубина в крови, но наличии гипоальбуминемии, повышении проницаемости гематоэнцефалического барьера, мембран нервных клеток (при нарушении обмена липидов, гипоксии).

При гемолитической желтухе в печени, желчевыводящих путях и кишечнике синтезируется избыточное количество глюкуронидов билирубина, уробилиногена, стеркобилиногена (гиперхолия — увели-ченная экскреция желчи в кишечник), что приводит к повышенному выделению стеркобилина и уробилина с калом и мочой. Однако при этом отсутствуют холемический синдром (желчные кислоты в кровь не поступают) и расстройство кишечного пищеварения (нет ахолического синдрома, как при других желтухах). К гемолитической желтухе могут присоединиться печеночная желтуха, если одновременно с гемолизом будут поражены гепатоциты, и механическая желтуха вследствие закупорки желчевыводящих путей желчными тромбами и камнями из билирубина, холестерина и кальция.

Печеночная желтуха. Этиология. Причиной возникновения пече-ночной желтухи является прежде всего действие этиологических факторов, вызывающих повреждение гепатоцитов (инфекция, токсические, в том числе лекарственные, вещества, внутрипеченочный холестаз), а также наследственный дефект захвата, конъюгации и выведения билирубина из гепатоцита.

Патогенез. Выделяют следующие патогенетические разновидности печеночных желтух:

1. Печеночная желтуха вследствие нарушения захвата билирубина гепатоцитом может возникнуть: а) в результате уменьшения в печеночной клетке содержания белков Y (лигандина) и Z, обеспечивающих перенос билирубина через цитоплазматическую мембрану из крови в клетку (при белковом голодании;; б) из-за конкурентного торможения захвата билирубина (рентгеноконтрастными веществами, некоторыми медикаментами, например антигельминтными препаратами); в) вследствие генетически детерминированного нарушения структуры мембраны васкулярного полюса гепатоцитов (это ведет к изменению проницаемости мембраны), отщепления в ней свободного билирубина от связи с альбумином и переноса билирубина в гепатоцит (при наследственном синдроме Жильбера—Мейленграх-та). При этом уже вторично не происходит конъюгация билирубина и возникает непрямая гипербилирубинемия (увеличивается количество свободного билирубина). В моче и кале снижается содержание стеркобилина из-за нарушения образования глюкуронидов билирубина в гепатоцитах и, следовательно, их производных в желчных канальцах и кишечнике.

2. Печеночная желтуха вследствие нарушения конъюгации билирубина с уридиндифосфоглюкуроновой кислотой в мембране эндо-плазматического ретикулума возникает при снижении активности УДФ-глюкуронилтрансферазы, катализирующей этот процесс.

Такой механизм развития печеночной желтухи отмечается при фи-зиологической желтухе новорожденных, у недоношенных детей, при вскармливании грудным молоком матери с высоким содержанием прегнандиола (эстрогены подавляют активность УДФ-глюкуронилтрансферазы, конкурируя с билирубином за связь с ней), применении ряда лекарственных препаратов (викасол), гипотиреозе, а также наследственном дефиците фермента (синдром Кригле-ра-Найяра, синдром Жильбера). Отсутствие или понижение активности УДФ-глюкуронилтрансферазы обусловливает нарушение образования связанного билирубина, количество которого в желчи уменьшается, что приводит к снижению выделения стеркобилина с калом и мочой. В то же время в крови возрастает концентрация не-конъюгированного билирубина — непрямая гипербилирубинемия. Высокий уровень свободного билирубина при синдроме Кригле-ра-Найяра вызывает тяжелую энцефалопатию из-за развития ядерной желтухи.

3. Печеночная желтуха вследствие нарушения экскреции билирубина из гепатоцита в желчевыводящие пути развивается при изменении проницаемости билиарной части цитоплазматической мембраны печеночной клетки, цитолизе гепатоцитов, разрыве желчных канальцев, сгущении желчи и закупорке внутрипеченочных путей {внутрипеченочный холестаз).

Изолированное нарушение выведения конъюгированного билирубина имеет место при наследственных синдромах Дубина-Джонсона (с выраженной пигментацией печени в результате накопления в ней субстратов типа меланина как последствие сниженной экскреторной функции гепатоцита) и Ротора, когда в крови увеличивается содержание связанного билирубина — прямая гипербитрубинемия. отмечается билирубинурия и в то же время пониженное выделение стеркобилина с калом и мочой.

Значительно чаще уменьшение выделения билирубина в той или иной мере сочетается с нарушением его захвата, внутриклеточного транспорта, конъюгации гепатоцитом. Таков механизм возникновения печеночной желтухи при повреждении клеток печени (гепато-целлюлярная желтуха) и внутрипеченочном холестазе (холестатиче-ская желтуха), что наблюдается при вирусных, инфекционных, токсических (в том числе медикаментозных) гепатитах, обменных гепа-тозах, циррозе печени (например, первичном бил парном циррозе), диффузной инфильтрации печени при лейкозах, гемохроматозе.

При повреждении печеночных клеток возникает сообщение между желчными путями, кровеносными и лимфатическими сосудами, через которое желчь поступает в кровь и частично в желчевыводящие пути. Отек перипортального пространства также может способствовать обратному всасыванию желчи из желчных ходов в кровь. Набухшие клетки сдавливают желчные протоки, создавая механическое затруднение оттоку желчи. Метаболизм и функции печеночных клеток нарушаются. При гепатоцеллюлярной и холестатической разновидности печеночной желтухи резко снижается экскреция конъюгированного билирубина в желчь, и он поступает из патологически измененных ге-патоцитов в кровь, возникает прямая гипербилирубинемия. В то же время в крови повышается уровень свободного билирубина - непрямая гипербилирубинемия, что связано со снижением таких функций гепатоцита, как захват, внутриклеточный транспорт свободного би-лирубина и его связывание в глюкурониды. Попадание в кровь вместе с желчью желчных кислот обусловливает развитие холемического синдрома. Уменьшение поступления желчи в кишечник (гипохолия, ахолия) ведет к понижению образования метаболитов билирубина и их выделения с калом и мочой (следы стеркобилина), а также появлению симптомов ахолинеского синдрома. Насыщенный желтый цвет мочи объясняется повышенным содержанием в ней прямого билирубина (билирубинурия) и уробилина, который недостаточно разрушается в печени после поступления в нее благодаря печеноч-но-кишечному кругообороту, попадает в общий кровоток и выводится почками (уробилинурия).

Повреждение печеночных клеток воспалительно-дистрофическим процессом при гепатоцеллюлярной и холестатической формах печеночной желтухи сопровождается развитием не только экскреторной, но и печеночно-клеточной разновидности печеночной недостаточности с нарушением всех функций печени, в том числе метаболической и защитной. При этом нередко понижается свертывание крови.

Подпеченочная желтуха (механическая, обтурационная). Этиология желтухи изложена в подразделе «Нарушение желчевыделения».

Патогенез. Механическое препятствие оттоку желчи приводит к застою {внепеченочный вторичный холестаз) и повышению давления желчи выше 2,7 кПа (270 мм вод.ст.), расширению и разрыву желчных капилляров и поступлению желчи прямо в кровь или через лимфатические пути. Появление желчи в крови обусловливает прямую гипербилирубинемию (увеличивается содержание конъюгированного билирубина), гиперхолестеринемию, развитие холемического синдрома в связи с циркуляцией в крови желчных кислот, билируби-нурию (отсюда темная окраска мочи — «цвета пива») и наличие желчных кислот в моче. Непоступление желчи в кишечник из-за механического препятствия в желче вы водящих путях приводит к тому, что не образуется и, следовательно, не выделяется стеркобилин с калом (обесцвеченный, ахоличный кал) и мочой. Таков же механизм развития ахолического синдрома, наиболее выраженного при механической желтухе при полной обтурации желче вы водящих путей.

Холемический синдром, наблюдаемый при механической и печеночной желтухе (гепатоцеллюлярная и холестатическая желтуха), возникает при попадании желчных кислот в кровь. Он характеризуется брадикардией и снижением артериального давления при действии желчных кислот на рецепторы и центр блуждающего нерва,

синусовый узел сердца и кровеносные сосуды. Токсическое действие желчных кислот на центральную нервную систему проявляется в виде общей астении, раздражительности, сменяющейся депрессией, сонливости днем и бессонницы ночью, головной боли и повышенной утомляемости. Раздражение чувствительных нервных окончаний кожи желчными кислотами приводит к кожному зуду. Увеличе-ние содержания желчных кислот в крови может вызвать гемолиз эритроцитов, лейкоцитолиз, снижение свертывания крови, повышение проницаемости мембран и развитие воспалительного процесса на месте контакта с тканями (печеночный некроз, перитонит, острый панкреатит).

Ахолический синдром обусловлен непоступлением желчи в кишечник при обтурации желчевыводящих путей или нарушении экскреторной функции гепатоцита (при механической и печеночной желтухе). При этом наблюдается расстройство кишечного пищеварения. Вследствие отсутствия в кишках желчных кислот не активируется липаза, не эмульгируются жиры, не образуются растворимые комплексы желчных кислот с жирными кислотами, в связи с чем 60-70% жиров не переваривается, не всасывается и удаляется из организма вместе с калом (стеаторея). Нарушение всасывания жирорастворимых витаминов (ретинола, токоферола, филлохинона) приводит к развитию авитаминозов. Без филлохинона (витамина Kj) не образуется протромбин, снижается свертывание крови, что обусловливает повышенную кровоточивость. Отсутствие желчных кислот приводит к нарушению моторики кишечника: ослабляются тонус и перистальтика кишечника, появляется запор. Однако последний нередко сменяется поносом в связи с усилением гнилостных и бродильных процессов в кишках и снижением бактерицидных свойств желчи. Кал обесцвечен, так как при ахолии не образуется стеркобилин, который исчезает и из мочи.

Дисхолия, при которой желчь приобретает литогенные свойства, обусловливает образование желчных камней в желчном пузыре и желчных протоках и развитие желчнокаменной болезни.

Этиология. Причины дисхолии разнообразны: воспалительные процессы, дискинезия желчного пузыря, желчных протоков, заболевания пищевого канала, избыточное содержание холестерина в пище, нарушение обмена веществ (особенно холестеринового, билирубинового).

Патогенез. Одним из основных механизмов возникновения ли-тогенной желчи является снижение холатохолестеринового и леци-тинохолестеринового индексов (отношения желчных кислот и лецитина к холестерину желчи). Это может быть вызвано уменьшением печеночно-кишечного кругооборота желчных кислот при патологии кишок и изменении в них микрофлоры, угнетением синтеза желчных кислот в печени (при понижении активности 7а-гидроксилазы), ускорением их всасывания слизистой оболочкой воспаленного желчного пузыря, уменьшением содержания лецитина и увеличением синтеза холестерина. При уменьшении концентрации желчных кислот и лецитина, обеспечивающих взвешенное состояние холестерина, холестерин выпадает в осадок и дает начало образованию холес-териновых камней. Инфекция, застой желчи также способствуют процессу камнеобразования, так как сопровождаются изменением свойств желчи — сдвигом рН в кислую сторону, снижением растворимости солей, выпадением их в осадок, коагуляцией белков из распадающихся клеток. Помимо холестериновых образуются пигментные (при гемолизе эритроцитов), известковые и сложные камни (например, холестериново-пигментно-известковые). Камни обусловливают нарушение желчевыделения и развитие механической желтухи.

 

4. - НАРУШЕНИЯ КИСЛОТНО-ОСНОВНОГО СОСТОЯНИЯ - Постоянство рН внутренней среды является необходимым условием существования высших организмов. Оно обеспечивается определенным соотношением кислот и оснований (кислотно-основное состояние — КОС) в биологических средах, при нарушении которого (выход рН за пределы 6,8—7,8) организм погибает. Наруше-ния КОС наблюдаются при многих заболеваниях, отягощают их течение и подлежат коррекции (рис. 14.10). В зависимости от направления сдвига рН (водородного показателя) крови, нарушения кислотно-основного состояния подразделяются на ацидоз и алкалоз. Если рН крови не выходит за пределы нормы (7,35-7,45), ацидоз или алкалоз называется компенсированным. Если же регуляторные механизмы недостаточны и отклонения рН становятся выраженными, то такие состояния называются декомпенсированными.

По механизму развития ацидоз или алкалоз бывает газовым (респираторным), развивающимся при нарушении обмена и транспорта СО2, и негазовым (метаболическим), который возникает при накоплении в организме нелетучих продуктов кислого и основного характера.

Устранение сдвига рН в организме осуществляется с помощью физико-химических и физиологических механизмов регуляции. Первыми, наряду с разведением кислот и оснований внеклеточной жидкостью, включаются буферные системы крови. Биологический буфер состоит из кислого (донор Н+) и основного (акцептор Н+) компонентов, соотношение между которыми при нормальном рН является величиной постоянной. Исходя из этого, соляная кислота, например, является более сильной, чем угольная, а анион С1~ по сравнению с НСО^ обладает менее выраженными основными свойствами, так как слабее удерживает возле себя ионы водорода.

Основными буферами организма являются четыре: гидрокарбонатный H2CO3/NHCO3 = 1/19, который действует в основном в крови; фосфатный NaH2PO4/Na2HPO4 = 1/4 — в почках и других тканях; белковый (NH2 -R - СООН) и гемоглобиновый НвО2УНв. В зависимости от того, где функционирует буфер — в жидкой среде или клетках, в состав его компонентов будет соответственно входить Na или К. Гидрокарбонатный буфер не обладает большой емкостью, однако является самым лабильным из буферов. Поэтому определение его компонентов в качестве индикаторов КОС (напряжение СО2 в крови, отражающее концентрацию угольной кислоты, и содержание гидрокарбоната) имеет большое диагностическое значение. Буферные свойства белков связаны с их амфолитностью. В щелочной среде белки функционируют как кислоты, отдавая (взамен на Na+ и К+) ионы водорода от своих карбоксильных групп. В кислой среде, выполняя роль оснований, они работают наоборот; ионы водородапри этом могут также связываться группой NH2, превращая ее в NH^. Самым емким буфером является гемоглобиновый. На его долю приходится до 75% всей буферной емкости крови. Гемоглобин, как известно, является белком — амфолитом, буферные свойства которого в основном связаны с существованием двух его форм: окисленной и восстановленной. В окисленной форме гемоглобин проявляет свои кислотные свойства (т.е. способность диссоциировать с отдачей Н+-ионов) и в 70—80 раз сильнее, чем восстановленный. Вместо отданных ионов водорода он связывает соответственно больше, чем восстановленный, ионов калия из КНСО3, находящегося в эритроцитах. Восстановленный Нв, выполняющий роль ос-нования, наоборот, присоединяет ионы водорода и отдает ионы калия. Кроме того, 10—15% углекислого газа из тканей гемоглобин транспортирует в виде нестойкого соединения карбогемоглобина. При необходимости этот процент может увеличиваться до 30.

Главные клеточные буферы — это белковый и фосфатный. Буферная система способна нейтрализовать избыток как кислот, так и оснований в организме, переводя их в форму, удобную для выведения. Так как продукты этих реакций тоже являются кислотами и основаниями, хотя и более слабыми, сдвиг рН только смягчается, но не ликвидируется. Полная нормализация кислотно-основного состояния происходит только с помощью физиологических механизмов компенсации, которые выводят кислоты и основания из организма и восстанавливают нормальное соотношение компонентов буферных систем. Это происходит в основном вследствие быстрого включения дыхательного механизма (обеспечивается выделение летучих продуктов) и почек (выводятся нелетучие вещества). Значительно меньшую роль в этом играют желудок, кишки, кожа. Участие легких в восстановлении рН выражается в изменении их вентиляции, интенсивность которой регулируется рСО2 и рН крови.

Почки осуществляют регуляцию содержания кислот и оснований в организме с помощью трех основных процессов:

1. Ацидогенез (секреция Н+-ионов эпителием канальцев нефрона и выведение их с мочой путем преобразования основных фосфатов в кислые, а также экскреция слабых органических кислот). Секреция Н+-ионов обеспечивается сложной работой эпителия канальцев нефрона, где постоянно с участием угольной карбоангидразы из СО2 и воды происходит образование угольной кислоты, которая затем диссоциирует на ионы водорода, активно секретируемые в просвет канальцев, и анионы НСО"^. Интенсивность секреции Н+-ионов зависит от количества СО2 в клетках, а следовательно, отрС02 в крови. Для предотвращения значительного снижения рН мочи (ниже 4,5 наступает гибель эпителия почечных канальцев) свободные Н+-ионы в ней связываются. Если связывание происходит с помощью Na2HPO4 (основного компонента фосфатного буфера), то превращение его в NaH2PO4 вызывает некоторое подкисление мочи, но в меньшей степени, чем свободные ионы водорода. Освобожденные при этом катионы натрия реаб-сорбируются и уходят в кровь в составе NaHCO3. Количество кислого фосфата и слабых органических кислот (кетоновые тела, молочная, лимонная и другие кислоты) определяет титрационную кислотность мочи.

2. Аммониогенез. Усиление аммониогенеза наблюдается при значительном снижении рН мочи. Этот процесс заключается в образовании аммиака из глутамина и других аминокислот в эпителии канальцев нефрона и последующем связывании им Н+-ионов (рис. 14.11). Образовавшийся ион аммония реагирует с анионом сильной кислоты (обычно с хлором). Аммиачная соль NH4C1 выводится с мочой, не снижая значение ее рН. Аммонийный катион способен замещать значительное количество катионов натрия в моче. которые реабсорбируются в кровь взамен на секретируемые ионы водорода. и это является одним из путей сохранения гидрокарбоната в организме.

3. Реабсорбция гидрокарбоната. Фильтрующийся в нефроне гидрокарбонат обычно не появляется во вторичной моче. Проходя через канальцы, он отдает катион натрия взамен на секретируемые ионы водорода и превращается в угольную кислоту, расщепляющуюся до СО2 и воды. Моча при этом не меняет своей реакции. Источником образования Н2СО3, отдающей свои Н-ионы в обмен на Na, является СО2 крови в случае повышения его напряжения и СО2, диффундирующий из мочи. Оставшийся в клетках после отщепления ионов водорода НСО^ присоединяет реабсорбированный Na* и в виде NaHCO3 восполняет количество гидрокарбоната крови, ушедшего в мочу при фильтрации. Как видно, при реабсорбции гидрокарбоната анион НСО^ не транспортируется, а обратно в кровь поступает только Na+.

Современные научные представления о регуляции рН жидкостей организма основываются главным образом на результатах исследования крови и плазмы. О концентрации Н+-ионов внутри клеток сведений недостаточно из-за отсутствия совершенных методов ее определения. Известно, что активная реакция внутриклеточной жидкости менее щелочная (рН 6,9), чем внеклеточной. При патологических состояниях может изменяться величина рН внутри клетки и вне ее, причем изменения эти нередко бывают различными.

 


Дата добавления: 2015-05-19 | Просмотры: 624 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.007 сек.)