Иннервацию барабанной перепонки обеспечивают ушная ветвь блуждающего нерва (r.auricularis n.vagus), барабанные ветви ушно-височного (n.auriculotemporalis) и языко- глоточного (n.glossopharyngeus) нервов.
4.2. Анатомия среднего уха
Среднее ухо (auris media) состоит из нескольких сообщающихся между собой воздухоносных полостей: барабанной полости (cavum tympani), слуховой трубы (tuba auditiva), входа в пещеру (aditus ad antrum), пещеры (antrum) и связанных с нею воздухоносных ячеек сосцевидного отростка (cellulae mastoidea). Посредством слуховой трубы среднее ухо сообщается с носоглоткой; в нормальных условиях это единственное сообщение всех полостей среднего уха с внешней средой.
Барабанная полость (рис. 4.4). Барабанную полость можно сравнить с кубом неправильной формы объемом до 1 см3. В ней различают шесть стенок: верхнюю, нижнюю, переднюю, заднюю, наружную и внутреннюю.
Верхняя стенка, или крыша, барабанной полости (tegmen tympani) представлена костной пластинкой толщиной 1—6 мм. Она отделяет барабанную полость от средней черепной ямки. В крыше имеются небольшие отверстия, через которые проходят сосуды, несущие кровь от твердой мозговой оболочки к слизистой оболочке среднего уха. Иногда в верхней стенке образуются дегисценции; в этих случаях слизистая оболочка барабанной полости непосредственно примыкает к твердой мозговой оболочке.
У новорожденных и детей первых лет жизни на границе между пирамидой и чешуей височной кости расположена не- зарашенная щель (fissura petrosquamosa), обусловливающая возникновение у них мозговых симптомов при остром воспалении среднего уха. Впоследствии на этом месте образуется шов (sutura petrosquamosa) и сообщение с полостью черепа в этом месте ликвидируется.
Нижняя (яремная) стенка, или дно барабанной полости (paries jugularis), граничит с лежащей под ней яремной ямкой (fossa jugularis), в которой располагается луковица яремной вены (bulbus venae jugularis). Чем больше ямка вдается в барабанную полость, тем тоньше костная стенка. Нижняя стенка может быть очень тонкой или иметь дегисценции, через которые луковица вены иногда выпячивается в барабанную полость. Это обусловливает возможность ранения луковицы яремной вены, сопровождающегося сильным кровотечением, при парацентезе или неосторожном выскабливании грануляций со дна барабанной полости.
Передняя стенка, трубная или сонная (paries tubaria, s.caroticus), барабанной полости образована тонкой костной пластинкой, кнаружи от которой расположена внутренняя сонная артерия. В передней стенке имеются два отверстия, верхнее из которых, узкое, ведет в полуканал для мышцы, натягивающей барабанную перепонку (semicanalis m.tensoris tympani), а нижнее, широкое, — в барабанное устье слуховой трубы (ostium tympanicum tybae auditivae). Кроме того, передняя стенка пронизана тоненькими канальцами (са- naliculi caroticotympanic!), через которые в барабанную полость проходят сосуды и нервы, в ряде случаев она имеет дегисценции.
Задняя (сосцевидная) стенка барабанной полости (paries mastoideus) граничит с сосцевидным отростком. В верхнем отделе этой стенки имеется широкий ход (aditus ad antrum), сообщающий надбарабаннов углубление — аттик (attic) с постоянной клеткой сосцевидного отростка — пещерой (antrum mastoideum). Ниже этого хода находится костный выступ — пирамидальный отросток, от которого начинается стременная мышца (m.stapedius). На наружной поверхности пирамидального отростка располагается барабанное отверстие (apertura tympanica canaliculi chordae), через которое в барабанную полость вступает барабанная струна (chorda tympani), отходящая от лицевого нерва. В толще нижнего отдела задней стенки проходит нисходящее колено канала лицевого нерва.
Наружная (перепончатая) стенка барабанной полости (paries membranaceus) образована барабанной перепонкой и частично в области аттика костной пластинкой, которая отходит от верхней костной стенки наружного слухового прохода.
Внутренняя (лабиринтная, медиальная, промонториальная) стенка барабанной полости (paries labyrinthicus) является наружной стенкой лабиринта и отделяет его от полости среднего уха. В средней части этой стенки имеется возвышение овальной формы — мыс (promonto- rium), образованный выступом основного завитка улитки. Кзади и кверху от мыса находится ниша окна преддверия
(овального окна по старой номенклатуре; fenestra vestibuli), закрытого основанием стремени (basis stapedis). Последнее прикреплено к краям окна посредством кольцевидной связки (Hg. annulare). В направлении кзади и книзу от мыса располагается другая ниша, на дне которой находится окно улитки (круглое окно по старой номенклатуре; fenestra cochleae), ведущее в улитку и закрытое вторичной барабанной перепонкой (шеш- brana tympany secundaria), которая состоит из трех слоев: наружного — слизистого, среднего — соединительнотканного и % внутреннего — эндотелиального.
Над окном преддверия по внутренней стенке барабанной i полости в направлении спереди назад проходит горизонтальное колено костного канала лицевого нерва, который, дойдя до выступа горизонтального полукружного канала на внутренней стенке антрума, поворачивает вертикально вниз — нисходящее колено — и выходит на основание черепа через шилосос- цевидное отверстие (for. stylomastoideum). Лицевой нерв находится в костном канале (canalis Fallopii). Горизонтальный отрезок канала лицевого нерва над окном преддверия выступает в барабанную полость в виде костного валика (prominentia canalis facialis). Здесь он имеет очень тонкую стенку, в которой нередко бывают дегисценции, что способствует распространению воспаления из среднего уха на нерв и возникновению паралича лицевого нерва. Хирургу-отоларингологу иногда приходится сталкиваться с различными вариантами и аномалиями расположения лицевого нерва как в его барабанном, так и в сосцевидном отделах.
В среднем этаже барабанной полости от лицевого нерва отходит барабанная струна (chorda tympani). Она проходит между молоточком и наковальней через всю барабанную полость вблизи барабанной перепонки и выходит из нее через каменисто-барабанную (глазерову) щель (fissura petrotym- panica, s.Glaseri), отдавая вкусовые волокна к языку на своей стороне, секреторные волокна к слюнной железе и волокна к нервным сосудистым сплетениям.
Барабанную полость условно делят на три отдела, или этажа: верхний — аттик, или эпитимпанум (epitympanum), располагающийся выше верхнего края натянутой части барабанной перепонки, высота аттика колеблется от 3 до 6 мм. Заключенное в нем сочленение молоточка с наковальней делит аттик на наружный и внутренний отделы. Нижняя часть наружного отдела аттика носит название «верхнее углубление барабанной перепонки», или «пруссаково пространство», кзади аттик переходит в антрум; средний — наибольший по размерам (mesotympanum), соответствует расположению натянутой части барабанной перепонки; нижний (hypotympanum) — углубление ниже уровня прикрепления барабанной перепонки (рис. 4.5, а, б).
Слизистая оболочка барабанной полости является продолжением слизистой оболочки носоглотки (через слуховую трубу); она покрывает стенки барабанной полости, слуховые косточки и их связки, образуя ряд складок и карманов. Плотно прилегая к костным стенкам, слизистая оболочка является для них одновременно и периостом (мукопериостом). Она покрыта в основном плоским эпителием, за исключением устья слуховой трубы,
где имеется мерцательный цилиндрический эпителий. В отдельных местах слизистой оболочки встречаются железы
Слу овые косточки — молоточек (malleus), наковальня (incus) и стремя (stapes) — связаны сочленениями, анатомически и функционально представляют собой единую цепь (рис. 4.6), которая тянется от барабанной перепонки к окну преддверия. Рукоятка молоточка вплетена в фиброзный слой барабанной перепонки, основание стремени укреплено в нише окна преддверия. Главная масса слуховых косточек — головка и шейка молоточка, тело наковальни — находится в надбарабанном пространстве (см рис. 4 5, б). Слуховые косточки укреплены между собой и со стенками барабанной полости при помощи эластических связок, что обеспечивает их свободное смещение при колебаниях барабанной перепонки
В молоточке различают рукоятку, шейку и головку У основания рукоятки находится короткий отрссток, выпячивающий кнаружи часть Ьарабанной перепонки. Масса молоточка около 30 мг
Наковальня состоит из тела, короткого отростк; и длинного отростка, сочлененного со стременем. Масса наковальни около 27 мг.
В стремени различают головку, две ножки и основание. Кольцевидная связка, с помощью которой основгние стремени прикрепляется к краю окна преддверия, достаточно эластична и обеспечивает хорошую колебательную подвижность стремени. В переднем отделе эта связка более широкая, чем в заднем, поэтому при передаче звуковых колебаний основание стремени смещается в основном своим передним полюсом. Стремя — самая маленькая из слуховых косточек; масса ее около 2,5 мг при площади основания 3—3,5 мм2.
Мышечный аппарат барабанной полости представлен двумя мышцами: натягивающей барабанную перепонку (m.tensor tympani) и стременной (ш stapedius). Обе эти мышцы, с одной стороны, удерживают слуховые косточки в определенном положении, наиболее благоприятном для проведения звука, с другой — защищают внутреннее ухо от чрезмерных звуковых раздражений путем рефлекторного сокращения Мышца, натягивающая барабанную перепонку, прикреплена одним концом в области отверстия слуховой трубы, другим — к рукоятке молоточка около шейки. Она иннервируется нижнечелюстной ветвью тройничного нерва через ушной ганглий; стременная мышца начинается от пирамидального выступа и прикреплена к шейке стремени; иннервируется стременным нервом (п.stapedius) веточкой лицевого нерва.
Слуховая (евстахиева) труба, как уже отмечалось, является образованием, через которое барабанная полость сообщается с внешней средой: открывается в области носоглотки. Слуховая труба состоит из двух частей: короткой костной — 1A канала (pars ossea) и длинной хрящевой — 2A (pars cartilaginea). Длина ее у взрослых в среднем равна 3,5 см, у новорожденных — 2 см.
В месте перехода хрящевой части в костную образуется перешеек (isthmus) — самое узкое место (диаметр 1 — 1,5 мм); он расположен приблизительно в 24 мм от глоточного отверстия трубы. Просвет костной части слуховой трубы в разрезе представляет собой подобие треугольника, а в перепончато- хрящевом отделе стенки трубы прилежат друг к другу.
Медиальнее костной части трубы проходит внутренняя сонная артерия. Следует учитывать, что в перепончато-хрящевой части нижняя и передняя стенки трубы представлены только фиброзной тканью. Глоточное отверстие слуховой трубы в 2 раза шире барабанного и расположено на 1—2,5 см ниже него на боковой стенке носоглотки на уровне заднего конца нижней носовой раковины.
Кровоснабжение барабанной полости осуществляется из бассейнов наружной и частично внутренней сонных артерий: передняя, барабанная артерия, отходящая от верхнечелюстной; задняя ушная артерия, отходящая от шилососце- видной артерии и анастомозирующая со средней менингеаль- ной артерией. От внутренней сонной артерии отходят ветви к передним отделам барабанной полости.
Венозный отток из барабанной полости происходит в основном по одноименным венам.
Лимфоотток из барабанной полости следует по ходу слизистой оболочки слуховой трубы в заглоточные лимфатические узлы.
Иннервация барабанной полости происходит за счет барабанного нерва (n.tympanicus) из LX пары (n.glossopharyn- geus) черепных нервов. Вступив в барабанную полость, барабанный нерв и его веточки анастомозируют на внутренней стенке с веточками лицевого нерва, тройничного и симпатического сплетений внутренней сонной артерии, образуя на мысе барабанное сплетение (plexus tympanicus s.Jacobsoni).
Сосцевидный отросток (prosessus mastoideus). У новорожденного сосцевидная часть среднего уха имеет вид небольшого возвышения позади верхнезаднего края барабанного кольца, содержащего только одну полость — антрум (пещера). Начиная со 2-го года, это возвышение вытягивается книзу за счет развития мышц шеи и затылка. Формирование отростка заканчивается в основном к концу 6-го — началу 7-го года жизни.
Сосцевидный отросток взрослого напоминает конус, опрокинутый вниз верхушкой — выступом. Внутреннее строение сосцевидного отростка неодинаково и зависит главным образом от образования воздухоносных полостей. Этот процесс происходит путем замещения костномозговой ткани врастающим эпителием. По мере роста кости количество воздухоносных клеток увеличивается. По характеру пневматизации следует различать: 1)пневматический тип строения сосцевидного отростка, когда количество воздухоносных ячеек достаточно велико. Они заполняют почти весь отросток и распространяются иногда даже на чешую височной кости, пирамиду, костную часть слуховой трубы, скуловой отросток; 2)диплоэтический (спонгиозный, губчатый) тип строения. В этом случае количество воздухоносных клеток невелико, они похожи на небольшие полости, ограниченные трабе- кулами, и располагаются в основном около пещеры; 3) с к л е- ротический (компактный) тип строения: сосцевидный отросток образован исключительно плотной костной тканью. Если пневматический тип строения сосцевидного отростка наблюдается при нормальном развитии ребенка, то диплоэти- ческий и склеротический иногда являются следствием нарушения обменных процессов или результатом перенесенных общих и местных воспалительных заболеваний и т.д. Существует мнение, что на процесс пневматизации сосцевидного отростка оказывают определенное влияние некоторые генетические или конституциональные факторы, а также связанные с ними резистентность и органотканевая реактивность.
Анатомическое строение сосцевидного отростка таково, что все его воздухоносные клетки независимо от их распространения и расположения сообщаются друг с другом и с пещерой, которая посредством aditus ad antrum сообщается с надбарабанным пространством барабанной полости. Пещера — единственная врожденная воздухоносная полость, ее развитие не зависит от типа строения сосцевидного отростка. У грудных детей в отличие от взрослых она значительно больше по объему и расположена довольно близко к наружной поверхности. У взрослых пещера лежит на глубине 2—2,5 см от наружной поверхности сосцевидного отростка. Размеры сосцевидного отростка у взрослых колеблются в пределах 9— 15 мм в длину, 5—8 мм в ширину и 4—18 мм в высоту. У новорожденного размеры пещеры такие же. От твердой мозговой оболочки средней черепной ямки пещеру отделяет костная пластинка (tegmen antri), при разрушении которой гнойным процессом воспаление может перейти на мозговые оболочки.
Твердая мозговая оболочка задней черепной ямки отделена от полости сосцевидного отростка треугольником Траутманна, который расположен кзади от лицевого нерва до сигмовидного синуса. Слизистая оболочка, выстилающая пещеру и воздухоносные клетки, является продолжением слизистой оболочки барабанной полости.
На внутренней задней поверхности (со стороны полости черепа) сосцевидного отростка имеется углубление в виде желоба. В нем лежит сигмовидная венозная пазуха (sinus sig- moideus), через которую осуществляется отток венозной крови из мозга в систему яремной вены. Твердая мозговая оболочка задней черепной ямки отграничивается от клеточной системы сосцевидного отростка посредством тонкой, но достаточно плотной костной пластинки (lamina vitrea). В ряде случаев гнойное воспаление клеток может привести к разрушению этой пластинки и проникновению инфекции в венозную пазуху. Иногда травма сосцевидного отростка может вызвать нарушение целости стенки синуса и привести к опасному для жизни кровотечению. Вблизи клеток сосцевидного отростка расположена сосцевидная часть лицевого нерва. Этим соседством иногда объясняются параличи и парезы лицевого нерва при острых и хронических воспалениях среднего уха.
Снаружи сосцевидный отросток имеет компактный кост- нокортикальный слой, поверхность которого шероховатая, особенно в нижнем отделе, где прикрепляется грудино-клю- чично-сосцевидная мышца (m.sternocleidomastoideus). На внутренней стороне верхушки отростка имеется глубокая борозда (incisura mastoidea), где прикрепляется двубрюшная мышца (m.digastricus). Через эту борозду гной иногда прорывается из клеток отростка под шейные мышцы. В пределах наружной поверхности сосцевидного отростка располагается гладкая площадка треугольной формы, получившая название «треугольник Шипо». В передневерхнем углу этого треугольника находятся ямка в виде площадки (planum mastoidea) и гребешок (spina suprameatum), которые соответствуют наружной стенке антрума. В этой области и производят трепанацию кости в поисках пещеры при мастоидитах у взрослых и антритах у детей.
Кровоснабжение сосцевидной области осуществляется из задней ушной артерии (a.auricularis posterior — ветвь наружной сонной артерии — a.carotis externa). Венозный отток происходит в одноименную вену, впадающую в наружную яремную вену (v.jugularis externa).
Иннервацию сосцевидной области обеспечивают чувствительные нервы из верхнего шейного сплетения большой ушной (n.auricularis magnus) и малый затылочный (п.ос- cipitalis minor). Двигательным нервом для рудиментарной заушной мышцы (m.auricularis posterior) является одноименная веточка лицевого нерва.
4.3. Анатомия внутреннего уха
Внутреннее ухо (auris interna) состоит из костного лабиринта (labyrinthus osseus) и включенного в него перепончатого лабиринта (labyrinthus membranaceus).
Костный лабиринт (рис. 4.7, а, б) находится в глубине пирамиды височной кости. Латерально он граничит с барабанной полостью, к которой обращены окна преддверия и улитки, медиально — с задней черепной ямкой, с которой сообщается посредством внутреннего слухового прохода (meatus acusticus internus), водопровода улитки (aquaeductus cochleae), а также слепо заканчивающегося водопровода преддверия (aquaeductus vestibuli). Лабиринт подразделяется на три отдела: средний — преддверие (vestibulum), кзади от него — система из трех полукружных каналов (canalis semicircularis) и впереди от преддверия — улитка (cochlea).
Преддверие, центральная часть лабиринта, — филогенетически наиболее древнее образование, представляющее собой небольшую полость, внутри которой различают два кармана: сферический (recessus sphericus) и эллиптический (reces- sus ellipticus). В первом, расположенном около улитки, залегает маточка, или сферический мешочек (sacculus), во втором, примыкающем к полукружным каналам, — эллиптический мешочек (utriculus). На наружной стенке преддверия имеется окно, прикрытое со стороны барабанной полости основанием стремени. Передняя часть преддверия сообщается с улиткой через лестницу преддверия, задняя — с полукружными каналами.
Полукружные каналы. Различают три полукружных канала в трех взаимно перпендикулярных плоскостях: наружный (canalis semicircularis lateralis), или горизонтальный, располагается под углом 30° к горизонтальной плоскости; передний (canalis semicircularis anterior), или фронтальный вертикальный, находится во фронтальной плоскости; задний (canalis semicircularis posterior), или сагиттальный вертикальный, располагается в сагиттальной плоскости. В каждом канале имеются два колена: гладкое и расширенное — ампулярное. Гладкие колена верхнего и заднего вертикальных каналов слиты в общее колено (crus commune); все пять колен обращены к эллиптическому карману преддверия.
Улитка представляет собой костный спиральный канал, у человека делающий два с половиной оборота вокруг костного стержня (modiolus), от которого внутрь канала винтообразно отходит костная спиральная пластинка (lamina spiralis ossea). Эта костная пластинка вместе с перепончатой базиляр- ной пластинкой (основная мембрана), являющейся ее продолжением, делит канал улитки на два спиральных коридора: верхний — лестница преддверия (scala vestibuli), нижний — лестница барабанная (scala tympani). Обе лестницы изолированы друг от друга и только у верхушки улитки сообщаются между собой через отверстие (helicotrema). Лестница преддверия сообщается с преддверием, барабанная лестница граничит с барабанной полостью посредством окна улитки. В барлбанной лестнице вблизи окна улитки берет начало водопровод улитки, который заканчивается на нижней грани пирамиды, открываясь в подпаутинное пространство. Просвет водопровода улитки, как правило, заполнен мезенхимальной тканью и, возможно, имеет тонкую мембрану, которая, по-видимому, выполняет роль биологического фильтра, преобразующего цереброспинальную жидкость в перилимфу. Первый завиток носит название «основание улитки» (basis cochleae); он выступает в барабанную полость, образуя мыс (promontorium). Костный лабиринт заполнен перилимфой, а находящийся в нем перепончатый лабиринт содержит эндолимфу.
Перепончатый лабиринт (рис. 4.7, в) представляет собой замкнутую систему каналов и полостей, которая в основном повторяет форму костного лабиринта. По объему перепончатый лабиринт меньше костного, поэтому между ними образуется перилимфатическое пространство, заполненное перилимфой. Перепончатый лабиринт подвешен в пери- лимфатическом пространстве при помощи соединительнотканных тяжей, которые проходят между эндостом костного лабиринта и соединительнотканной оболочкой перепончатого лабиринта. Это пространство очень небольшое в полукружных каналах и расширяется в преддверии и улитке. Перепончатый лабиринт образует эндолимфатическое пространство, которое анатомически замкнуто и выполнено эндолимфой.
Перилимфа и эндолимфа представляют собой гуморальную систему ушного лабиринта; эти жидкости различны по электролитному и биохимическому составу, в частности эндолимфа содержит в 30 раз больше калия, чем перилимфа, а натрия в ней в 10 раз меньше, что имеет существенное значение в формировании электрических потенциалов. Перилимфа сообщается с субарахноидальным пространством посредством водопровода улитки и представляет собой видоизмененную (главным образом по составу белка) цереброспинальную жидкость. Эндолимфа, находясь в замкнутой системе перепончатого лабиринта, непосредственного сообщения с мозговой жидкостью не имеет. Обе жидкости лабиринта функционально тесно связаны между собой. Важно отметить, что эндолимфа имеет огромный положительный электрический потенциал покоя, равный +80 мВ, а перилимфатические пространства нейтральны. Волоски волосковых клеток имеют отрицательный заряд, равный —80 мВ, и проникают в эндолимфу с потенциалом +80 мВ.
С анатомической и физиологической точек зрения во внутреннем ухе различают два рецептсрных аппарата: слуховой, находящийся в перепончатой улитке (ductus cochleans). и вестибулярный, объединяющий мешочки преддверия (sacculus et utriculus) и три перепончатых полукружных канала
Рис. 4.7. Продолжение
в
Перепончатая улитка расположена в барабанной лестнице, она представляет собой спиралеобразный канал — улитковый ход (ductus cochleans) с находящимся в нем ре цеп- торным аппаратом — спиральным, или кортиевым, органом Corganum spirale) На поперечном р; зрезе (от верхушки улитки к ее основанию через костный стержень) улитковый ход имеет треугольную форму; он образован рреддверной, наружной и тимпанальной стенками (рис. 4.8, а). Преддверная стенка обращена к лестнице преддверия; она представляет собой очень тонкую мембраг.у — преддверная ме Mt ран а (мембрана Рейсс- нера). Наружная стенка образована еппральной связкой (lig. spirale) с расположенными на ней тремя видами клеток сосудистой полоски (stria vascularis). Сосудистая полоска обильно а — костная улитка: 1 — верхушечный завиток 2 — стержень, 3 — продолговатый канал стержня; 4 — лестница преддверия, 5 - барабанная лестница: 6 — костная спиральнаг пластинка 7 — спиральный кана. читки 8 — спиральный канал стержня 9 — гнутренний слуховой проход; 10 — продырявленный спиральный путь; 11 — отверстие верхушечного завитка; 12 — крючок спиральной пластин Ki-
!
Рис. 4.8. Строение улитки
а
снабжена капиллярами, но они не контактируют непосредственно с эндолимфой, заканчиваясь в базилярном и промежуточном слоях клеток. Эпителиальные клетки сосудистой полоски образуют латеральную стенку эндокохлеарного пространства, а спиральная связка — стенку перилимфатического пространства. Тимпанальная стенка обращена к барабанной лестнице и представлена основной мембраной (membrana basi- laris), соединяющей край спиральной пластинки со стенкой костной капсулы. На основной мембране лежит спиральный орган — периферический рецептор кохлеарного нерва. Сама мембрана имеет обширную сеть капиллярных кровеносных сосудов. Улитковый ход заполнен эндолимфой и посредством соединяющего протока (ductus reuniens) сообщается с мешочком (sacculus). Основная мембрана представляет собой образование, состоящее из эластических упругих и слабо связанных друг с другом поперечно расположенных волокон (их насчитывают до 24 ООО). Длина этих волокон увеличивается по на правлению от основного завитка улитки (0,15 см) к области верхушки (0,4 см); протяженность мембраны от основания улитки до ее верхушки 32 мм. Строение основной мембраны имеет важное значение для уяснения физиологии слуха.
Спиральный (кортиев) орган состоит из ней- роэпителиальных внутренних и наружных волосковых клеток, поддерживающих и питающих клеток (Дейтерса, Гензена, Клаудиуса), наружных и внутренних столбиковых клеток, образующих кортиевы дуги (рис. 4.8, б). Кнутри от внутренних столбиковых клеток располагается ряд внутренних волосковых клеток (до 3500); снаружи от наружных столбиковых клеток расположены ряды наружных волосковых клеток (до 20 000). Всего у человека насчитывают около 30 000 волосковых клеток. Они охватываются нервными волокнами, исходящими из биполярных клеток спирального ганглия. Клетки спирального органа связаны друг с другом, как это обычно наблюдается в строении эпителия. Между ними имеются внутриэпителиаль- ные пространства, заполненные жидкостью, получившей название «кортилимфа». Она тесно связана с эндолимфой и довольно близка к ней по химическому составу, однако имеет и существенные отличия, составляя, по современным данным, третью внутриулитковую жидкость, обусловливающую функциональное состояние чувствительных клеток. Считают, что кортилимфа выполняет основную, трофическую, функцию спирального органа, поскольку он не имеет собственной вас- куляризации. Однако к этому мнению нужно относиться критически, поскольку наличие капиллярной сети в базилярной мембране допускает наличие в спиральном органе собственной васкуляризации.
Над спиральным органом расположена покровная мембрана (membrana tectoria), которая так же, как и основная, отходит от края спиральной пластинки. Покровная мембрана представляет собой мягкую, упругую пластинку, состоящую из протофибрилл, имеющих продольное и радиальное направление. Эластичность этой мембраны различна в поперечном и продольном направлениях. В покровную мембрану через кор- тилимфу проникают волоски нейроэпителиальных (наружных, но не внутренних) волосковых клеток, находящихся на основной мембране. При колебаниях основной мембраны происходят натяжение и сжатие этих волосков, что является моментом трансформации механической энергии в энергию электрического нервного импульса. В основе этого процесса лежат отмеченные выше электрические потенциалы лабиринтных жидкостей.
Перепончатые полукружные каналы и мешочки преддверия. Перепончатые полукружные каналы расположены в костных каналах. Они меньше по диаметру и повторяют их конструкцию, т.е. имеют ампулярные и гладкие части (колена) и подвешены к периосту костных стенок поддерживающими соединительнотканными тяжами, в которых проходят сосуды. Исключение составляют ампулы перепончатых каналов, которые почти полностью выполняют костные ампулы. Внутренняя поверхность перепончатых каналов выстлана эндотелием, за исключением ампул, в которых расположены рецепторные клетки. На внутренней поверхности ампул имеется круговой выступ — гребень (crista ampul- laris), который состоит из двух слоев клеток — опорных и чувствительных волосковых, являющихся периферическими рецепторами вестибулярного нерва (рис. 4.9). Длинные волоски нейроэпителиальных клеток склеены между собой, и из них формируется образование в виде круговой кисточки (cupula terminalis), покрытое желеобразной массой (сводом). Механи ческое смещение круговой кисточки в сторону ампулы или гладкого колена перепончатого канала в результате движения эндолимфы при угловых ускорениях является раздражением нейроэпьтелиальных клеток, которое преобразуется в электрический импуцьс и передается на окончания ампулярных веточек вестибулярного нерва
Рис. 4.9. Строение о гол итор ого (а) и ампупярного (б) рецепторов.
а
В преддверии лабиринта имеются два перепончатых мешочка — sacculus и utriculus с заложенными в них отолитовыми аппаратами, которые соответственно мешочкам называются macula utriculi и macula sacculi и представляют собой небольшие возвышения на в нутре ьней поверхности обоих мешочков, выстланных нейроэпителием Этот рецептор также состоит из опорных и волосковых клеток Волоски чувствительных клеток, переплетаясь своими концами, образуют сеть, которая погружена в желеобразную массу, содержащую большое число кристаллов, имеющих форму параллелепипедов Кристаллы поддерживаются концами волосков чувствительных клеток и называются отолитами, они состоят из фосфата и карбоната кальция (аррагонит) Волоски волосковых клеток вместе с отолитами и желеобразной массой составляют отолитовую мембрану. Давление отолитов (сила тяжести) на волоски чувствительных клеток, а также смещение волосков при прямолинейных ускорениях является моментом трансформации механической энергии в электрическую.
Оба мешочка соединены между собой посредством тонкого канала (ductus utriculosaccularis), который имеет ответвление — эндолимфатический проток (ductus endolymphaticus), или водопровод преддверия. Последний выходит на заднюю поверхность пирамиды, где слепо заканчивается расширением (sac- cus endolymphaticus) в дупликатуре твердой мозговой оболочки задней черепной ямки.
Таким образом, вестибулярные сенсорные клетки расположены в пяти рецепторных областях: по одной в каждой ампуле трех полукружных каналов и по одной в двух мешочках преддверия каждого уха. К рецепторным клеткам этих рецепторов подходят периферические волокна (аксоны) от клеток вестибулярного узла (ganglion Scarpe), располагающегося во внутреннем слуховом проходе, центральные волокна этих клеток (дендриты) в составе VIII пары черепных нервов идут к ядрам в продолговатом мозгу.
Кровоснабжение внутреннего уха осуществляется через внутреннюю лабиринтную артерию (a.laby- rinthi), являющуюся ветвью базилярной (a.basilaris). Во внутреннем слуховом проходе лабиринтная артерия делится на три ветви: преддверную (a. vestibularis), преддверно-улитковую (a.vestibulocochlearis) и улитковую (a.cochlearis) артерии. Венозный отток из внутреннего уха идет по трем путям: венам водопровода улитки, водопровода преддверия и внутреннего слухового прохода.
Иннервация внутреннего уха. Периферический (рецепторный) отдел слухового анализатора образует описанный выше спиральный орган. В основании костной спиральной пластинки улитки расположен спиральный узел (ganglion spirale), каждая ганглиозная клетка которого имеет два отростка — периферический и центральный. Периферические отростки идут к рецепторным клеткам, центральные являются волокнами слуховой (улитковой) порции VIII нерва (n.vestibu- locochlearis). В области мосто-мозжечкового угла VIII нерв входит в мост и на дне четвертого желудочка делится на два корешка: верхний (вестибулярный) и нижний (улитковый). Волокна улиткового нерва заканчиваются в слуховых бугорках, где находятся дорсальные и вентральные ядра. Таким образом, клетки спирального узла вместе с периферическими отростками, идущими к нейроэпителиальным волосковым клеткам спирального органа, и центральными отростками, заканчивающимися в ядрах продолговатого мозга, составляют I нейрон слухового анализатора. От вентрального и дорсального слуховых ядер в продолговатом мозге начинается II нейрон слухового анализатора. При этом меньшая часть волокон этого нейрона идет по одноименной стороне, а большая часть в виде striae acusticae переходит на противоположную сторону. В составе боковой петли волокна II нейрона доходят до оливы, откуда
начинается IIJ нейрон, идущий к ядрам четверохолмия и медиального коленчатого тела. IV нейрон идет к височной доли мозга и оканчивается в корковом отделе слухового анализатора, располагаясь преимущественно в поперечных височных извилинах (извилины Гешля) (рис. 4.10).
Вестибулярный анализатор построен аналогичным образом. Во внутреннем слуховом проходе расположен вестибулярный ганглий (ganglion Scarpe), клетки которого имеют два отростка. Периферические отростки идут к нейроэпителиальным волос- ковым клеткам ампулярных и отолитовых рецепторов, а центральные составляют вестибулярную порцию VIII нерва (п.со- chleovestibularis). В ядрах продолговатого мозга заканчивается I нейрон. Различают четыре группы ядер: латеральные ядра
Дейтерса; медиальные, треугольные Швальбе и верхнеугловые Бехтерева, нисходящие Роллера. От каждого ядра идет с преимущественным перекрестом II нейрон.
Широкие адаптационные возможности вестибулярного анализатора обусловлены наличием множества ассоциативных путей ядерного вестибулярного комплекса (рис. 4.11). С позиций клинической анатомии и диагностики заболеваний следует отметить пять связей вестибулярных ядер с ядрами центральной нервной системы. 1. Вестибулоспинальные связи, начинаясь от латеральных ядер, в составе вестибулоспинального тракта заканчиваются в двигательных ядрах спинного мозга, обеспечивая связь вестибулярных рецепторов с мышечной системой. 2. Bec-
тибулоглазодвигательные связи осуществляются через систему заднего продольного пучка: от медиального и нисходящего ядер идет перекрещенный путь к глазодвигательным ядрам, а от верхнего ядра — неперекрещенный. 3. Вестибуловегетативные связи идут от нижних отделов медиального треугольного ядра к ядрам блуждающего нерва, диэнцефальной области и др. 4. Вестибуло- мозжечковые пути проходят во внутреннем отделе нижней ножки мозжечка и связывают вестибулярные ядра с ядрами мозжечка. 5. Вестибулокортикальные связи обеспечиваются систе- ■ мой вертикальных волокон, идущих от всех четырех ядер к зрительному бугру. Прерываясь в последнем, названные волокна направляются к височной доле коры головного мозга, где вестибулярный анализатор имеет рассеянное представительство. Кора и мозжечок выполняют регулирующую функцию по отношению к вестибулярному анализатору.
Особенности кровоснабжения и иннервации лабиринта состоят в том, что: 1) ветви лабиринтной артерии не имеют анастомозов; 2) преддверная (рейсснерова) мембрана лишена капилляров; 3) в crista ampullaris полукружных каналов и пятнах utriculus и sacculus подэпителиальная капиллярная сеть находится в непосредственном контакте с нейрочувствительным эпителием; 4) в нервных рецепторах преддверия и полукружных каналов к каждой чувствительной клетке подходит не одно, а несколько нервных волокон, поэтому гибель одного из этих волокон не влечет за собой гибели клетки; 5) в спиральном органе к каждой чувствительной клетке подходит только одно концевое нервное волокно, не дающее ответвлений к соседним клеткам, поэтому дегенерация нервного волокна ведет к гибели соответствующей клетки; 6) существует афферентная и эфферентная иннервация клеток, т.е. иннервация, осуществляющая центростремительный и центробежный поток. 95 % афферентной (центростремительной) иннервации приходится на внутренние волосковые клетки, основной эфферентный поток, наоборот, направлен на наружные волосковые клетки.
4.4. Клиническая физиология уха
I
Клиническая физиология уха складывается из слуховой и вестибулярной рецепции.
4.4.1. функция органа слуха
Слуховая рецепция — сложный процесс, включающий функции звукопроведения и звуковосприятия. Для наиболее полного освещения функции слухового аппарата необходимо представить основные акустические характеристики.
Основные физические понятия акустики. В физическом понимании звук представляет собой механические колебания твердой, жидкой или газообразной среды, источником которых может быть любой процесс, вызывающий местное изменение давления или механическое напряжение в среде. С физиологической точки зрения под звуком понимают такие механические колебания, которые, воздействуя на слуховой рецептор, вызывают в нем определенный физиологический процесс, воспринимаемый как ощущение звука. Распространение звуковых волн в разных средах зависит от скорости звука и плотности среды, произведение которых используют для обозначения акустического сопротивления, или импеданса, среды. Скорость распространения звуковых колебаний в воздухе составляет 332 м/с, в воде — 1450 м/с.
Колебания звучащего тела можно представить как маятни- кообразные. Время, в течение которого совершается одно полное колебание, называется периодом колебания. При маятни- кообразных колебаниях в воздушной среде образуются участки сгущения (уплотнения) среды, чередующиеся с участками разрежения. В результате попеременного образования участков сгущения и разрежения возникает звуковая волна. Различают поперечные волны — в твердых телах и продольные — в воздухе и жидких средах. Одинаковые состояния звуковой волны — участки сгущения или разрежения — называются фазами. Расстояние между одинаковыми фазами называют длиной волны. Низкие звуки, при которых фазы отстоят далеко друг от друга, характеризуются большой длиной волны, высокие звуки с близким расположением фаз — небольшой (короткой).
Фаза и длина волны имеют важное значение в физиологии слуха. Так, одним из условий оптимального слуха является приход звуковой волны к окнам преддверия и улитки в разных фазах (анатомически это обеспечивается звукопроводящей системой среднего уха). Высокие звуки с небольшой длиной волны вызывают колебания невысокого столба лабиринтной жидкости (перилимфы) в основании улитки, низкие, с большей длиной волны, распространяются до ее верхушки. Это обстоятельство важно для уяснения современных теорий слуха.
К физическим характеристикам звука относятся также частота и амплитуда звуковых колебаний. Единицей измерения частоты колебаний является 1 герц (Гц), обозначающий число колебаний в секунду. Амплитуда колебаний — расстояние между средним и крайним положениями колеблющегося тела. Амплитуда колебаний (интенсивность) звучащего тела в значительной степени определяет восприятие звука.
По характеру колебательных движений звуки делятся на три группы: чистые тоны, сложные тоны и шумы. Гармонические (ритмичные) синусоидальные колебания создают чистый, простой звуковой тон (т.е. звучит тон одной частоты), например звук камертона. Негармонический звук, отличающийся от простых тональных звуков сложной структурой, называется шумом. Шумовой спектр состоит из разнообразных колебаний, частоты которых относятся к частоте основного тона хаотично, как различные дробные числа. Восприятие шума часто сопровождается неприятными субъективными ощущениями. Сложные тоны характеризуются упорядоченным отношением их частот к частоте основного тона, а ухо имеет способность анализировать сложный звук. Вообще каждый сложный звук разлагается ухом на простые синусоидальные составляющие (закон Ома), т.е. происходит то, что в физике обозначают термином «теорема (ряд) Фурье».
Способность звуковой волны огибать препятствия называется дифракцией. Низкие звуки с большой длиной волны обладают лучшей дифракцией, чем высокие с короткой волной. Явление отражения звуковой волны от встречающихся на ее пути препятствий называется эхом. Многократное отражение звука в закрытых помещениях от различных предметов носит название «реверберация». При хорошей звукоизоляции помещений реверберация слабая, например в театре, кинозале и т.д., при плохой — сильная. Явление наложения отраженной звуковой волны на первичную звуковую волну получило название «интерференция». При этом явлении может наблюдаться усиление или ослабление звуковых волн. При прохождении звука через наружный слуховой проход осуществляется его интерференция и звуковая волна усиливается.
Важное значение в звукопроведении играет явление резонанса, при котором звуковая волна одного колеблющегося предмета вызывает соколебательные движения другого (резонатор). Резонанс может быть острым, если собственный период колебаний резонатора совпадает с периодом воздействующей силы, и тупым, если периоды колебаний не совпадают. При остром резонансе колебания затухают медленно, при тупом — быстро. Важно отметить, что колебания структур уха, проводящих звуки, затухают быстро; это устраняет искажение внешнего звука, поэтому человек может быстро и последовательно принимать все новые и новые звуковые сигналы. Некоторые структуры улитки обладают острым резонансом, что способствует различению двух близкорасположенных частот.
Основные свойства слухового анализатора. К основным свойствам слухового анализатора относится его способность различать высоту (понятие частоты) звука, его громкость (понятие интенсивности) и тембр, включающий основной тон и обертоны.
Как принято в классической физиологической акустике, ухо человека воспринимает полосу звуковых частот от 16 до 20 ООО Гц (от 12-24 до 18 000-24 ООО Гц). Чем выше амплитуда звука, тем лучше слышимость. Однако до известного предела, за которым начинается звуковая перегрузка. Колебания с частотой менее 16 Гц называются инфразвуком, а выше верхней границы слухового восприятия (т.е. более 20 ООО Гц) — ультразвуком. В обычных условиях ухо человека не улавливает инфра- и ультразвук, но при специальном исследовании эти частоты также воспринимаются.
Область звукового восприятия у человека ограничена звуками, расположенными в диапазоне между 16 колебаниями в секунду (нижняя граница) и 20 ООО (верхняя граница), что составляет 10,5 октавы. Звук частотой 16 Гц обозначается C2 — субконтроктава, 32 Гц — С, (контроктава), 64 Гц — С (большая октава), 128 Гц — с (малая октава), 256 Гц — сь 512 Гц — с2, 1024 Гц - с3, 2048 Гц - с4, 4096 Гц - C5 и т.д.
С возрастом слух постепенно ухудшается, смещается в сторону восприятия низких частот и зону наибольшей чувствительности. Так, если в возрасте 20—40 лет она находится в области 3000 Гц, то в возрасте 60 лет и более смещается в область 1000 Гц. Верхняя и нижняя границы слуха могут изменяться при заболеваниях органа слуха, в результате чего суживается область слухового восприятия. У детей верхняя граница звуковосприятия достигает 22 000 Гц, у пожилых людей она ниже и обычно не превышает 10 000—15 000 Гц. У всех млекопитающих верхняя граница выше, чем у человека: например, у собак она достигает 38 000 Гц, у кошек — 70 000 Гц, у летучих мышей — 200 000 Гц и более. Как показали исследования, проведенные в нашей стране, человек способен воспринимать ультразвуки частотой до 200—225 кГц, но только при его костном проведении. В аналогичных условиях расширяется диапазон воспринимаемых частот и у млекопитающих [Сагало- вич Б.М., 1962].
Весь диапазон воспринимаемых ухом человека частот делят на несколько частей: тоны до 500 Гц называются низкочастотными, от 500 до 3000 Гц — среднечастотными, от 3000 до 8000 Гц — высокочастотными. Различные части диапазона воспринимаются ухом неодинаково. Оно наиболее чувствительно к звукам, находящимся в зоне 1000—4000 Гц, имеющей значение для восприятия человеческого голоса. Чувствительность (возбудимость) уха к частотам ниже 1000 и выше 4000 Гц значительно понижается. Так, для частоты 10 000 Гц интенсивность порогового звука в 1000 раз больше, чем для оптимальной зоны чувствительности в 1000—4000 Гц. Различная чувствительность к звукам низкой и высокой частоты во многом объясняется резонансными свойствами наружного слухового прохода. Определенную роль играют также соответствующие свойства чувствительных клеток отдельных завитков улитки.
Минимальная энергия звуковых колебаний, способная вызвать ощущение звука, называется порогом слухового восприятия. Порог слухового ощущения определяет чувствительность уха: чем выше порог, тем ниже чувствительность, и наоборот. Следует различать интенсивность звука — физическое понятие его силы и громкость — субъективную оценку силы звука. Звук одной и той же интенсивности люди с нормальным и пониженным слухом воспринимают как звук разной громкости.
Интенсивность звука, т.е. средняя энергия, переносимая звуковой волной к единице поверхности, измеряется в ваттах на 1 см2 (1 Вт/см2). Звуковое давление, возникающее при прохождении звуковой волны в газообразной или жидкой среде, выражается в микробарах (мкбар): 1 мкбар равен давлению в 1 дину на площади 1 см2, что соответствует одной миллионной доле атмосферного давления. Порог восприятия звукового давления у человека равен 0,0002 мкбар, или 10~9 эрг, а максимальный порог переносимого давления — IO4 эрг, т.е. разница между минимальной и максимальной чувствительностью равна IO13 эрг и измеряется миллиардными величинами. Измерение слуха такими многоцифровыми единицами представляется крайне неудобным, поэтому единицей измерения уровня громкости звука, степени усиления (или ослабления) его является децибел (дБ). В современной аудиологии величину порога слышимости принято выражать в Па (паскалях): она составляет 2-1 б"5 Па, или 20 мнПа. 1 Па равен 1 н/м2 (н — ньютон).
Единица измерения «бел», названная в честь изобретателя телефона Бела, обозначает отношение силы исследуемого звука к ее пороговому уровню, децибел — 0,1 десятичного логарифма этой величины. Введение такой единицы для акустических измерений дало возможность выразить интенсивность всех звуков, находящихся в области слухового восприятия, в относительных единицах от 0 до 140 дБ. Сила шепотной речи составляет примерно 30 дБ, разговорной — 40—60 дБ, уличного шума — 70 дБ, громкой речи — 80 дБ, крик около уха — 110 дБ, шума реактивного двигателя — 120 дБ. Максимальным порогом силы звука для человека является 120—130 дБ; звук такой силы вызывает боль в ушах.
Слуховой анализатор обладает высокой различительной способностью. Область восприятия различий по частоте характеризуется разностным (дифференциальным) порогом частоты звука, иными словами, тем минимальным изменением частоты, которое может быть воспринято при сравнении двух различаемых частот. В диапазоне тонов от 500 до 5000 Гц ухо различает изменение частоты в пределах 0,003 %, в диапазоне 50 Гц различительная способность находится в пределах 0,01 %.
Слуховой анализатор способен дифференцировать звуки и по силе, т.е. различать появление новой, большей (или меньшей) интенсивности звука. Дифференциальный порог силы звука (ДП) будет большим в зоне низких частот и менее значительным в речевой зоне частот, где он равен в среднем 0,8 дБ.
Важной особенностью уха является способность к анализу сложных звуков. Звучащее тело, например струна, колеблется не только целиком, давая основной тон, но и своими частями (половиной, четвертью и т.д.), колебания которых дают обертоны (гармоники), что вместе с основным тоном составляет тембр. Все окружающие нас природные звуки содержат ряд обертонов, или гармоник, которые придают звуку определенную окраску — тембр. Звуки различных музыкальных инструментов одинаковой силы и высоты отличаются величиной, числом и качеством обертонов и легко распознаются ухом. Лишь некоторые деревянные музыкальные инструменты способны синтезировать чистый тон. В природе чистые тона также встречаются крайне редко (пение двух видов птиц).
Люди с музыкальным, или абсолютным, слухом обладают наиболее выраженной способностью производить анализ частоты звука, выделяя его составные обертоны, отличая две рядом расположенные ноты, тон от полутона. В основе музыкального слуха лежат тонкое распознавание частотных интервалов и музыкальная (звуковая) память.
Одной из особенностей слухового анализатора является его способность при постороннем шуме воспринимать одни звуки хуже, чем другие. Такое взаимное заглушение одного звука другим получило название «маскировка». Звук, который заглушает другой, называется маскирующим, звук, который заглушают, — маскируемым. Это явление нашло широкое применение в аудиологии, когда при исследовании одного уха маскирующий тон подают на другое с целью его заглушения. Следует иметь в виду, что обычно низкие тона обладают повышенной способностью маскировать более высокие тона.
Физиологическое приспособление органа слуха к силе звукового раздражителя называют адаптацией. Она выражается в том, что воздействие звука на слуховой анализатор приводит к понижению его чувствительности в тем большей степени, чем сильнее звук. Это создает оптимальный настрой анализатора на восприятие звука данной силы и частоты. Выключение звукового раздражителя сопровождается, как правило, быстрым восстановлением чувствительности слухового анализатора. Адаптация происходит не только к звуку, но и к тишине-, при этом чувствительность анализатора обостряется, он готовится (настраивается) воспринять звуки наименьшей силы. Адаптация также играет роль защиты от сильных и продолжительных звуков. У разных людей адаптация имеет индивидуальные особенности, как и восстановление чувствительности. Процессы адаптации протекают по-разному при болезнях уха, и изучение их имеет значение в дифференциальной диагностике.
От адаптации следует отличать утомление слухового анализатора, которое возникает при его перераздражении и медленно восстанавливается. Этот процесс в отличие от адаптации всегда приводит к снижению работоспособности органа слуха. После отдыха явления утомления проходят, однако при частых и длительных воздействиях звуков и шума значительной интенсивности развиваются стойкие нарушения слуховой функции. Заболевания уха предрасполагают к более быстрому развитию утомления слуха.
Важным свойством слухового анализатора является его способность определять направление звука — ото- топика. Установлено, что ототопика возможна только при наличии двух слышащих ушей, т.е. при бинауральном слухе. Определение направления звука обеспечивается следующими условиями: 1) разницей в силе звука, воспринимаемой ушами, поскольку ухо, которое находится ближе к источнику звука, воспринимает его более громким. Здесь имеет значение и то обстоятельство, что одно ухо оказывается в звуковой тени; 2) способностью различать минимальные промежутки времени между поступлением звука к одному и другому уху. У человека порог этой способности равен 0,063 мс. Способность локализовать направление звука пропадает, если длина звуковой волны меньше двойного расстояния между ушами, которое равно в среднем 21 см, поэтому ототопика высоких звуков затруднена. Чем больше расстояние между приемниками звука, тем точнее определение его направления; 3) способностью воспринимать разность фаз звуковых волн, поступающих в оба уха. В последние годы установлена возможность вертикальной ототопики, осуществляемой одним ухом (Б.М.Сагалович и соавт.). Ее острота несколько ниже бинауральной горизонтальной ототопики, она во многом зависит от частоты звука, сочетания различных высоких частот и имеет закономерности как в норме, так и в патологии.
Функции наружного, среднего и внутреннего уха, звукопро- ведение и звуковосприятие. Периферический отдел слухового анализатора выполняет две основные функции: звукопроведе- ние — доставка звуковой энергии к рецепторному аппарату (преимущественно механическая, или физическая, функция) и звуковосприятие — превращение (трансформация) физической энергии звуковых колебаний в нервное возбуждение. Соответственно этим функциям различают звукопроводящий и звуковоспринимающий аппараты.
Звукопроведение. В выполнении этой функции участвуют ушная раковина, наружный слуховой проход, барабанная перепонка, цепь слуховых косточек, мембрана окна улитки, перилимфа, базилярная пластинка и преддверная (рейсснерова) мембрана.
Звуковая волна, как уже отмечалось, является двойным колебанием среды, в котором различают фазу повышения и фазу понижения давления. Продольные звуковые колебания поступают в наружный слуховой проход, достигают барабанной перепонки и вызывают ее колебания. В фазе повышения (сгущения) давления барабанная перепонка вместе с рукояткой молоточка двигается кнутри. При этом тело наковальни, соединенное с головкой молоточка, благодаря подвешивающим связкам смещается кнаружи, а длинный отросток наковальни — кнутри, смещая таким образом кнутри и стремя. Вдавливаясь в окно преддверия, стремя толчкообразно приводит к смещению перилимфы преддверия. Дальнейшее распространение звуковой волны возможно лишь по лестнице преддверия, где колебательные движения передаются преддверной (рейсс- неровой) мембране, а та в свою очередь приводит в движение эндолимфу и базилярную пластинку, а затем перилимфу барабанной лестницы и вторичную мембрану окна улитки. При каждом движении стремени в сторону преддверия перилимфа в конечном итоге вызывает смещение мембраны окна улитки в сторону барабанной полости. В фазе снижения давления передающая система возвращается в исходное положение.
Воздушный путь доставки звуков во внутреннее ухо является основным. Другой путь проведения звуков к спиральному органу — костная (тканевая) проводимость. Примером может служить простой опыт. Если герметично закрыть уши, восприятие громких звуков сохранится. В этом случае вступает в действие механизм, при котором звуковые колебания воздуха попадают на кости черепа, распространяются в них и доходят до улитки. Однако механизм передачи звука до спирального органа через кость имеет двоякий характер. В одном случае колебание основной мембраны и, следовательно, возбуждение спирального органа происходит таким же образом, как и при воздушном проведении, т.е. звуковая волна в виде двух фаз, распространяясь по кости до жидких сред внутреннего уха, в фазе давления будет выпячивать мембрану окна улитки и в меньшей степени основание стремени (учитывая практическую несжимаемость жидкости). Одновременно с таким компрессионным механизмом может наблюдаться другой, инерционный, при котором учитываются не только различия в массе и плотности слуховых косточек и жидких сред внутреннего уха по отношению к черепу, но также свободное соединение этих косточек с костями черепа. В этом случае при проведении звука через кость колебание звукопроводящей системы не будет совпадать с колебаниями костей черепа, следовательно, базилярная и преддверная мембраны будут колебаться и возбуждать спиральный орган обычным путем. Колебание костей черепа можно вызвать прикосновением к нему звучащего камертона или костного телефона аудиометра. Таким образом, при нарушении передачи звука через воздух костный путь его проведения приобретает большое значение. Инерционный механизм характерен для передачи низких частот, компрессионный — высоких.
Функции отдельных элементов органа слуха в проведении звуков различны.
Ушная раковина. Роль ушных раковин в физиологии слуха человека изучена достаточно детально. Они имеют определенное значение в ототопике. В частности, при изменении положения ушных раковин вертикальная ототопика искажается, а при выключении их путем введения в слуховые проходы полых трубок полностью исчезает. Наряду с этим ушные раковины играют роль коллектора для высоких частот, отражая их от разных завитков к слуховому проходу.
Наружный слуховой проход. По форме он представляет собой трубку, благодаря чему является хорошим проводником звуков в глубину (чему способствует и покрытие стенок прохода ушной серой). Ширина и форма слухового прохода не играют особой роли при звукопроведении. Вместе с тем полное заращение просвета слухового прохода или механическая закупорка его препятствуют распространению звуковых волн к барабанной перепонке и приводят к заметному ухудшению слуха. Кроме того, форма слухового прохода и высокая чувствительность его кожи способствуют предотвращению травм органа слуха. В частности, в слуховом проходе вблизи барабанной перепонки поддерживается постоянный уровень температуры и влажности независимо от колебаний температуры и влажности внешней среды, что обеспечивает стабильность упругих свойств барабанной перепонки. Однако главное заключается в том, что резонансная частота слухового прохода при длине 2,7 см составляет примерно 2—3 кГц и благодаря этому именно указанные частоты поступают к барабанной перепонке усиленными на 10—12 дБ.
Полость среднего уха. Важным условием правильной работы звукопроводящей системы является наличие одинакового давления по обе стороны барабанной перепонки. При повышении или понижении давления как в полости среднего уха, так и в наружном слуховом проходе натяжение барабанной перепонки меняется, акустическое (звуковое) сопротивление повышается и слух понижается. Выравнивание давления по обе стороны барабанной перепонки обеспечивается вентиляционной функцией слуховой трубы. При глотании или зевании слуховая труба открывается и становится проходимой для воздуха. Поскольку слизистая оболочка среднего уха постепенно всасывает воздух, нарушение вентиляционной функции слуховой трубы приводит к тому, что наружное давление превышает давление в среднем ухе, в результате чего происходит втяжение барабанной перепонки внутрь. В связи с этим нару-