АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

СИНТЕЗ ВЕЩЕСТВ В ПОЧКАХ

Прочитайте:
  1. A) нарушения синтеза гепарина
  2. A) увеличение реабсорбции глюкозы в почках
  3. B) Оперативтік остеосинтез
  4. c) металлды штифтпен интрамедуллярлы остеосинтез
  5. D)компрессионный остеосинтез
  6. E Расстройство всех видов обмена веществ
  7. E) уменьшением синтеза белка на единицу мышечной массы
  8. F1 Психические и поведенческие расстройства вследствие употребления психоактивных веществ
  9. F19 Психические и поведенческие расстройства в результате сочетанного употребления наркотиков и использования других психоактивных веществ
  10. III. Отравления примесями химических веществ

В почке образуются некоторые вещества, выделяемые с мочой (гиппуровая кислота, аммиак и др.), а также всасывающиеся в кровь (ренин, простагландины, глюкоза, об­разующаяся в почке, и др.). Гиппуровая кислота синтезируется в клетках канальцев из бензойной кислоты и гликокола. В опытах на изолированной почке было показано, что при введении в почечную артерию раствора бензойной кислоты и гликокола в моче по­является гиппуровая кислота. В клетках канальцев при дезаминировании аминокислот, главным образом глутамина, из аминогрупп образуется аммиак. Он поступает преимуще­ственно в мочу, но частично проникает через базальную плазматическую мембрану в кровь, и в почечной вене аммиака больше, чем в почечной артерии.

ОСМОТИЧЕСКОЕ РАЗВЕДЕНИЕ И КОНЦЕНТРИРОВАНИЕ МОЧИ

Способностью к образованию мочи с большей осмотической концентрацией, чем кровь, обладают лишь почки теплокровных животных. Многие исследователи пытались разгадать физиологический механизм этого процесса, но лишь в начале 50-х годов XX века была обоснована гипотеза, согласно которой образование осмотически концент­рированной мочи связано с механизмом противоточно-поворотной множительной системы некоторых участков нефрона.

Принцип противоточного обмена достаточно широко распространен в природе и используется в технике. Механизм работы такой системы рассмотрим на примере кровеносных сосудов в конечностях арктических животных. Во избежание больших потерь тепла кровь в параллельно расположенных артериях и венах конечностей течет таким образом, что теплая артериальная кровь согревает охлажденную венозную кровь, движущуюся к сердцу (рис. 204). В стопу притекает артериальная кровь с низкой температурой, что резко уменьшает теплоотдачу. Здесь такая система функционирует только как противоточный обменник: в почке же она обладает множительным эффектом. Для лучшего понимания ее работы рассмотрим систему, состоящую из трех параллельно расположенных трубок. Трубки I и II дугообразно соединены на одном из концов (рис. 204, Б). Стенка, общая для обеих трубок, обладает способностью переносить соли, но она не пропускает воду. Когда в такую систему через вход 1 наливают жидкость с концентрацией 300 мосмоль/л и она не течет, то через некоторое время в результате транспорта солей в трубке I жидкость станет гипотонической, а в трубке II — гипертони­ческой. В том случае, когда жидкость течет по трубкам непрерывно, начинается кон­центрирование солей. На каждом горизонтальном уровне перепад их концентраций вследствие одиночного эффекта транспорта солей не может превышать 200 мосмоль/л, однако по длине трубки происходит умножение одиночных эффектов и система начинает работать как противоточная множительная система. Так как по ходу движения жидкости из нее извлекаются не только соль, но и некоторое количество воды, концентрация раствора все более повышается по мере приближения к изгибу петли. В трубке III регу-


У 17* 15' 13*   9* Т 5' 3' i
Л m   15г 13'   9*   5' з-;
HI

Рис. 204. Схема функционирования противоточно-поворотной системы. А — теплообменник в сосудистой системе конечностей арктических животных; обмен тепла между артериальной и венозной кровью способствует сбережению тепла и на каждом уровне не превышает 1°— 2° С. Б — модель противоточной множительной системы н начальном состоянии (а) ив период эффективного концентрирования мочи (б). Объяснение в тексте.

300 300 300 300 зоо 300
200- 250' 300' 350' 400-
-400 -450 ■500 -550 -600 ■650 -700
■—400
I 300 300 300 300 300 300 300
300 300 300 300 300 300
г-500
-•600
 

 

 



 

 


Амтицч^и транспорт Na Пассивным транспорт Н30 ^.Д Пассивна»' г о экспорт мочевины

 

Рис. 205. Повышение концентрации (показано штриховкой увеличенной частоты) осмотически ак­тивных веществ в различных участках почки.

а — состояние антидиуреза; б — состояние водного диуреза. Широкими стрелками обозначено направление транспорта основных веществ, участвующих в осмотическом концентрировании; тонкими стрелками — дви­жение первичной и вторичной мочи.


лируется проницаемость стенок для воды; когда стенка начинает пропускать воду, объем жидкости в ней уменьшается. При этом вода идет в сторону большей осмотической концентрации. В результате этого растет концентрация жидкости в трубке III и умень­шается объем содержащейся в ней жидкости. Концентрация в ней веществ будет зави­сеть от ряда условий, в том числе от работы противоточной множительной системы трубок I и II. Как будет ясно из последующего изложения, работа почечных канальцев в процессе осмотического концентрирования мочи похожа на описанную модель.

В зависимости от состояния водного баланса организма почки выделяют разведен­ную или концентрированную мочу. В процессе осмотического концентрирования мочи в почке принимают участие все отделы канальцев, сосуды мозгового вещества, интер- стициальная ткань. Из 100 мл фильтрата, образовавшегося в клубочках, 2/з его реаб­сорбируются к концу проксимального сегмента. Оставшаяся в канальцах жидкость содержит осмотически активные вещества в такой же концентрации, как и ультрафиль­трат плазмы крови, хотя и отличается от него по составу вследствие реабсорбции ряда веществ в предшествующих частях нефрона. Далее канальцевая жидкость переходит из коркового слоя почки в мозговое вещество — в нисходящий (тонкий) отдел петли нефрона (петля Генле) и движется до вершины почечного сосочка, где каналец изгиба­ется на 180°, и моча переходит в восходящий отдел петли, расположенный параллельно ее нисходящему отделу.

Функциональное значение различных отделов петли неоднозначно. Когда жидкость из проксимального отдела канальца поступает в тонкий нисходящий отдел петли неф­рона, она попадает в зону почки, в интерстициальной ткани которой концентрация осмотически активных веществ выше, чем в коре почки. Это повышение осмолярной концентрации в наружной зоне мозгового вещества обусловлено деятельностью толстого восходящего отдела петли нефрона. Его стенка непроницаема для воды, а клетки тран­спортируют ионы С1" и Na+ в интерстициальную ткань. Стенка нисходящего отдела петли проницаема для воды, и поэтому вода всасывается из просвета канальца в окружа­ющую межуточную ткань почки по осмотическому градиенту, а осмотически активные вещества остаются в просвете этого отдела канальца.

Чем дальше от коры по продольной оси находится жидкость в нисходящем колене петли, тем выше ее осмолярная концентрация. В каждых соседних участках нисходя­щего отдела петли имеется лишь небольшое нарастание осмотического давления, но по длине петли осмолярная концентрация постепенно растет от 300 мосмоль/л почти до 1450 мосмоль/л. Иначе говоря, на вершине петли нефрона осмолярная концентрация жидкости возрастает в несколько раз и при этом объем ее уменьшается. При дальней­шем передвижении жидкости по восходящему отделу петли нефрона происходит реабсор­бция ионов С1" и Na+, вода остается в просвете канальца, поэтому в начальные части дистального извитого канальца всегда поступает гипотоническая жидкость, концентра­ция осмотически активных веществ в которой менее 200 мосмоль/л.

Из гипотонической жидкости по осмотическому градиенту реабсорбируется вода, осмолярная концентрация жидкости в этом отделе увеличивается, т. е. жидкость в про­свете канальца становится изоосмотической. Окончательное концентрирование мочи происходит в собирательных трубках; они расположены параллельно канальцам петли нефрона, в мозговом веществе почки. Как отмечалось выше, в интерстициальной жид­кости мозгового вещества почки возрастает осмолярная концентрация. Вследствие этого из жидкости собирательных трубок реабсорбируется вода и концентрация мочи в них увеличивается, уравновешиваясь со все повышающейся осмолярной концентрацией внутреннего мозгового вещества почки. В конечном счете выделяется гиперосмотическая моча, в которой максимальная концентрация осмотически активных веществ может быть равна осмолярной концентрации интерстициальной жидкости на вершине почечного сосочка (рис. 205).

 

В условиях дефицита воды в организме усиливается секреция антидиуретического гормона гипофиза (АДГ), что увеличивает проницаемость стенок конечных частей дистального сегмента и собирательных трубок для воды.

14 -Физиология человека

В отличие от наружной зоны мозгового вещества почки, где повышение осмолярности основано главным образом на транспорте хлоридов, увеличение осмолярной концентрации во внутренней зоне мозгового вещества почки зависит от нескольких механизмов. Особую роль в осмотическом концентрировании играет накопление мочевины. Стенки проксимального канальца проницаемы для мочевины. В этом отделе нефрона реабсорбируется до 50% профильтровавшейся мочевины. Однако при извлечении жидкости из извитого дистального канальца оказалось, что содержание мочевины даже несколько превышает ее количество, поступившее с фильтратом, и составляет около 110%. Было показано, что имеется система внутрипочечного кругооборота мочевины, которая участ­вует в осмотическом концентрировании мочи. В просвете собирательных трубок вследствие реаб­сорбции воды повышается концентрация мочевины, АДГ увеличивает проницаемость собирательных трубок в мозговом веществе не только для воды, но и для мочевины. Когда увеличивается проница­емость канальцевой стенки для мочевины, она диффундирует в мозговое вещество почки. Постоян­ное поступление во внутреннее мозговое вещество мочевины, ионов С1" и Na +, реабсорбируемых клетками тонкого восходящего отдела петли нефрона и собирательных трубок, обеспечивает повы­шение осмотической концентрации в мозговом веществе почки. Вслед за увеличением осмолярности окружающей собирательные трубки межуточной ткани возрастает и реабсорбция воды из них и повышается эффективность осморегулирующей функции почки. Изменение проницаемости канальцевой стенки для мочевины позволяет понять, почему очищение от мочевины уменьшается при снижении мочеотделения.

Прямые кровеносные сосуды мозгового вещества почки, подобно канальцам петли нефрона, также образуют противоточную систему, играющую очень важную роль в осмотическом концентри­ровании. Благодаря особенностям расположения прямых сосудов обеспечивается эффективное кровоснабжение мозгового вещества почки, но не происходит вымывания осмотически активных веществ, поскольку в крови прямых сосудов наблюдаются такие же изменения осмотической концен­трации, как и в тонком нисходящем отделе петли нефрона. При движении крови в ней постепенно возрастает осмотическая концентрация, а во время ее обратного движения к коре почки соли и дру­гие растворенные вещества, диффундирующие через сосудистую стенку, переходят в интерстици- альную ткань. Тем самым сохраняется градиент концентрации осмотически активных веществ, т. е. прямые сосуды функционируют как проти.воточная система. Скорость движения крови по прямым сосудам влияет на количество удаляемых из мозгового вещества ионов Na+, СГ и мочевины, участвующих в создании осмотического градиента, и отток реабсорбируемой воды.

При водной нагрузке относительная проксимальная реабсорбция ионов и воды не изменяется, и в дистальный отдел нефрона поступает такое же количество жидкости, как и без нагрузки. При этом стенка дистальных отделов почечных канальцев остается водонепроницаемой, а из протекающей мочи клетки продолжают реабсорбировать соли натрия; при этом выделяется гипотоническая моча, концентрация осмотически активных веществ в которой ниже 50 мосмоль/л. Проницаемость канальцев для мочевины низкая, и она экскретируется с мочой, не накапливаясь в мозговом веществе почки. Собиратель­ные трубки также обеспечивают реабсорбцию натрия, хлора и других ионов. Их основная функциональная особенность состоит в том, что реабсорбция веществ происходит в небольших количествах, но против наиболее значительного градиента, что обусловли­вает существенные различия концентрации ряда неорганических веществ в моче по сравнению с кровью.

■ Таким образом, деятельность петли нефрона, конечных частей дистального отдела собирательных трубок обусловливает способность почек человека при водной нарузке выделять большие объемы (до 900 мл/ч) разведенной, гипотонической мочи, а при дефиците воды в организме экскретировать мочи всего 10—12 мл/ч, в 4'/г раза осмоти­чески более концентрированной, чем кровь. Способность почки осмотически концентри­ровать мочу исключительно развита у некоторых пустынных грызунов, что позволяет им длительное время не пить воду.


Дата добавления: 2015-05-19 | Просмотры: 1564 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.005 сек.)