ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ КЛЕТОК МИОКАРДА
В естественных условиях клетки миокарда постоянно находятся в состоянии ритмической активности (возбуждения), поэтому об их потенциале покоя можно говорить лишь условно. У большинства клеток он составляет около 90 мВ и определяется почти целиком концентрационным градиентом К+.
Потенциалы действия (ПД), зарегистрированные в разных отделах сердца при помощи внутриклеточных микроэлектродов, существенно различаются по своей форме, амплитуде и длительности (рис. 117, А, Б). На рис. 117, В схематически показан потенциал действия одиночной клетки миокарда желудочка. Для возникновения этого потенциала потребовалось деполяризовать мембрану на 30 мВ. В потенциале действия различают следующие фазы: 1) быструю начальную деполяризацию — фаза 0/1; 2) медленную реполяризацию, так называемое плато — фаза 2; 3) быструю реполяризацию — фаза 3; 4) фазу покоя, или медленной диастолической деполяризации — фаза 4.
Фаза 0/1 в клетках миокарда предсердий, сердечных проводящих миоцитов (волокон Пуркинье) и миокарда желудочков имеет ту же природу, что и восходящая фаза потенциала действия нервных и скелетных мышечных волокон — она обусловлена повышением натриевой проницаемости, т. е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика потенциала действия происходит изменение знака мембранного потенциала (с —90 мВ на +30 мВ).
Деполяризация мембраны вызывает активацию медленных натрий-кальциевых каналов. Поток Са2+ внутрь клетки по этим каналам приводит к развитию плато потенциала действия (фаза 2). В период плато натриевые каналы инактивируются и,клетка переходит в состояние абсолютной рефрактерности. Одновременно происходит активация калиевых каналов. Выходящий из клетки поток К+ обеспечивает быструю реполяризацию мембраны (фаза 3), во время которой кальциевые каналы закрываются, что ускоряет процесс реполяризации (поскольку падает входящий кальциевый ток, деполяризующий мембрану).
Рис. 117. Л. Различные типы потенциалов действия сердечных клеток, коррелированные с временным ходом электрокардиограммы.
|
| С—А —синуснО'Предсердный (енноатриальный) узел; П ■ предсердие; А- В предсерлно-желудочковый <.чт- риовентрикулярныЙ) узел; ПЖ — предссрдмо-желудочковый пучок (пучок Гиса); МП н ЛИ — правая и левая ножки мучка; Ж - желудочки. I, 2, 3, 4, 5. 6 потенциалы действия клеток миокарда; 7 ЭКГ. Ь: а — Потенциалы действии одиночного мышечного волокна желудочка сердца (нижняя кривая) и одновременно зарегистрированная электрокардиограмма всего сердца (верхняя кривая); б — потенциал одиночного мышечного волокна предсердия; в — потенциалы действия синусно- предсердногп (енноатриального) узла. Видна спонтанная деполяризация (д) в диастолу; г одновременная регистрация потенциала действия (I) и сокращения волокон (2) сосочковой мышиы желудочка сердца. В: Потенциал действии одиночной клетки миокарда, а — ПД желуличка. Стрелками показаны преобладающие потоки ионов Na, Са, К, ответственные за различные фазы (1 4) ПД, б апторигмическая активность синугно- иредсердного (синоагриалыюго) узла. Стрелками показана медленная дистоннческая деполяризация.
| Реполяризация мембраны вызывает постепенное закрывание калиевых и реактивацию натриевых каналов. В результате возбудимость миокардиальной клетки восстанавливается — это период так называемой относительной рефрактерности.
.В клетках рабочего миокарда (предсердия, желудочки) мембранный потенциал (в интервалах между следующими друг за другом потенциалами действия) поддерживается на более или менее постоянном уровне. Однако в клетках синусно-предсердного (синоатриального) узла, выполняющего роль «водителя ритма» сердца, наблюдается спонтанная диастолическая деполяризация (фаза 4), при достижении критического уровня которой (примерно — 50 мВ) возникает новый потенциал действия (рис. 117, В). На этом механизме основана авторитмическая активность указанных сердечных клеток. Необходимо отметить и другие важные их особенности: 1) малая крутизна подъема потенциала действия; 2) медленная реполяризация (фаза 2), плавно переходящая
в фазу быстрой реполяризации (фаза 3), во время которой мембранный потенциал достигает уровня — 60 мВ (вместо — 90 мВ в рабочем миокарде), после чего вновь начинается фаза медленной диастолической деполяризации. Сходные черты имеет электрическая активность клеток атриовентрикулярного узла, однако скорость спонтанной диастолической деполяризации у них значительно ниже, чем у клеток синоатри- ального узла, соответственно ритм их потенциальной автоматической активности меньше.
Ионные механизмы генерации электрических потенциалов в клетках водителя ритма полностью не расшифрованы. Установлено, что в развитии медленной диастолической деполяризации и медленной восходящей фазы потенциала действия клеток синоатриального узла ведущую роль играют кальциевые каналы (необходимо подчеркнуть, что они проницаемы не только для ионов но и для ионов Na+). Быстрые натриевые каналы не принимают участия в генерации потенциалов действия этих клеток.
Скорость развития медленной диастолической деполяризации регулируется вегетативной нервной системой. При увеличении симпатических влияний медиатор норадреналин активирует медленные кальциевые каналы, вследствие чего скорость диастолической деполяризации увеличивается и ритм спонтанной активности возрастает. В случае увеличения парасимпатических влияний (по блуждающему нерву) медиатор ацетилхолин повышает калиевую проницаемость мембраны, что замедляет развитие диастолической деполяризации или прекращает ее. Поэтому происходит урежение ритма или полное прекращение автоматии.
Способность клеток миокарда в течение многих десятилетий жизни человека находится в состоянии непрерывной ритмической активности, обеспечивается эффективной работой ионных насосов этих клеток. За период диастолы из клетки выводятся ионы Na+, а в клетку возвращаются ионы К+. Ионы Са2+, проникшие в цитоплазму, секвестрируются саркоплазматическим ретикулумом. Ухудшение кровоснабжения миокарда (ишемия) ведет к обеднению запасов АТФ и креатинфосфата в миокардиальных клетках; работа насосов нарушается и как следствие падает электрическая и механическая активность миокардиальных клеток.
Функции проводящей системы сердца
Спонтанная генерация ритмических импульсов является результатом слаженной деятельности многих клеток синоатриального узла, которая обеспечивается тесными контактами (нексусами) и электротоническим взаимодействием этих клеток. Возникнув в синоатриальном узле, возбуждение-распространяется по проводящей системе на сократительный (рабочий) миокард.
Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение, т. к. любая клетка ее обладает автоматией. При этом наблюдается так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков проводящей системы по мере их удаления от синоатриального узла.
В обычных условиях автоматия всех нижерасположенных участков проводящей системы подавляется более частыми импульсами, поступающими из синоатриального узла. В случае поражения и выхода из строя этого узла водителем ритма может стать атриовентрикулярный узел. Импульсы при этом будут возникать с частотой 40—50 в минуту. Если выйдет из строя этот узел, водителем ритма могут стать волокна пред- сер дно-желудочкового пучка (пучка Гиса). Частота сердечных сокращений тогда не превысит 30—40 ударов в минуту. В том случае, если-выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возникнуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким — примерно 20 ударов в минуту. Этого недостаточно для поддержания нормальной функции высших отделов мозга (для сохранения сознания), но в случае восстановления нормальной функции сердца мозг возвращается к полноценной деятельности.
Отличительной особенностью проводящей системы сердца является наличие в ее клетках большого количества тесных межклеточных контактов — нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками проводящей системы и рабочего миокарда. Благодаря наличию таких контактов миокард, состоящий из отдельных клеток, работает как единое целое, представляя собой функциональный синцитий. Существование большого количества межклеточных контактов увеличивает надежность проведения возбуждения в миокарде.
Возникнув в синусно-предсердном (синоатриальном) узле, возбуждение распространяется по предсердиям, достигая предсердно-желудочкового (атриовентрикуляр- ного) узла. В сердце теплокровных существуют специальные проводящие пути между синусно-предсердным и предсердно-желудочковым узлами, а также между правым и левым предсердиями. Следует отметить, что скорость распространения возбуждения в этих проводящих путях не намного превосходит скорость распространения возбуждения по рабочему миокарду. В предсердно-желудочковом узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения возникает некоторая задержка проведения возбуждения. Вследствие задержки возбуждение доходит до предсердно-желудочкового пучка и сердечных проводящих миоцитов (волокон Пурки- нье) лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки. Следовательно, атриовентрикулярная задержка обеспечивает необходимую последовательность (координацию) сокращений предсердий и желудочков.
Скорость распространения возбуждения в предсердно-желудочковом пучке и диф- фузно расположенных сердечных проводящих миоцитах достигает 4,5—5 м/с, что в 5 раз больше скорости распространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти одновременно, т. е. синхронно.
Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетательной функции желудочков. Если бы возбуждение проводилось не через пред- сер дно-желудочко'вьгй пучок (пучок Гиса), а распространялось по клеткам рабочего миокарда — диффузно, то период асинхронного сокращения продолжался значительно дольше, клетки миокарда вовлекались в сокращение не все сразу, а постепенно и желудочки потеряли бы до 50% своей мощности.
Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических свойств сердца: 1) ритмическую генерацию импульсов (потенциалов действия); 2) необходимую последовательность (координацию) сокращений предсердий и желудочков; 3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).
Рефрактерная фаза миокарда и экстрасистола
Потенциал действия миокарда желудочков длится около 0,3 с (более чем в 100 раз дольше, чем потенциал действия скелетной мышцы). Во время потенциала действия мембрана клетки становится невосприимчивой к действию других раздражителей, т. е. рефрактерной. Взаимоотношения между фазами потенциала действия миокарда и величиной его возбудимости показаны на рис. 118. Различают период абсолютной рефрактерности (продолжается 0,27 с, т. е. несколько короче длительности потенциала действия); период относительной рефрактерности, во время которого сердечная мышца может ответить сокращением лишь на очень сильные раздражения (продолжается 0,03 с), и короткий период супернормальной возбудимости, когда сердечная мышца может отвечать сокращением и на подпороговые раздражения.
Сокращение (систола) миокарда продолжается около 0,3 с, что по времени примерно совпадает с рефрактерной фазой. Следовательно, в период сокращения сердце неспособно реагировать на другие раздражители и на повторные раздражители, следую-
Рис. 118. Соотношение изменений возбудимости мышцы сердца и потенциала действия.
I - период а бс п.! ют ной рефрнктерноети; 2 период относительной рефрактерности; 3 — период су пер нормальности; 4 - л ер иол полного восстановлении нормальной аозбудимости.
50 too 150 200 250 300 ЗЬО 400 ВреИя мс
щие с высокой частотой, отвечает только одиночными сокращениями. Наличие длительной рефрактерной фазы препятствует развитию непрерывного укорочения (тетануса) сердечной мышцы, что было бы равнозначно остановке сердца.
Раздражение, нанесенное на миокард в период расслабления (диастолы), когда его возбудимость восстановлена, вызывает внеочередное сокращение сердца, так называемую экстрасистолу. Экстрасистолы могут появляться не только при искусственном раздражении миокарда, но и под влиянием различных патологических процессов, при эмоциональном возбуждении и т. д. Наличие или отсутствие экстрасистол, а также их характер определяется при регистрации электрокардиограммы.
Электрокардиограмма
Охват возбуждением огромного количества клеток рабочего миокарда вызывает появление отрицательного заряда на поверхности этих клеток. Сердце становится мощным электрогенератором. Ткани тела, обладая сравнительно высокой электропроводностью, позволяют регистрировать электрические потенциалы сердца с поверхности тела. Такая методика исследования электрической активности сердца, введенная в практику В. Эйнт- говеном, А. Ф. Самойловым, Т. Льюисом, В. Ф. Зелениным и др., получила название электрокардиографии, а регистрируемые с ее помощью кривые называются электрокардиограммами (ЭКГ). Электрокардиография широко применяется в медицине как диагностический метод, позволяющий установить особенности нарушений сердечной деятельности.
Для исследований в настоящее время пользуются специальными приборами — электрокардиографами с электронными усилителями и осциллографами. Запись кривых производят на движущейся бумажной ленте. Разработаны также приборы, при помощи которых записывают ЭКГ во время активной мышечной деятельности и на расстоянии от обследуемого. Эти приборы — телеэлектрокардиографы — основаны на принципе передачи ЭКГ на расстояние посредством радиосвязи. Таким способом регистрируют ЭКГ у спортсменов во время соревнований, у космонавтов в космическом полете и т. д. Созданы приборы для передачи электрических потенциалов, возникающих при деятельности сердца, по телефонным проводам и записи ЭКГ в специализированном центре, находящемся на большом расстоянии от пациента.
| Вследствие определенного положения сердца в грудной клетке и своеобразной формы тела человека электрические силовые линии, возникающие между возбужденными (—) и невозбужденными (+) участками сердца, распределяются по поверхности тела неравномерно. Поэтому в зависимости от места приложения электродов форма ЭКГ и вольтаж ее зубцов будут различны. Для регистрации ЭКГ производят отведение потенциалов от конечностей и поверхности грудной клетки. Чаще используются три, так называемых стандартных, отведения от конечностей (рис. 119). I отведение: правая рука — левая рука; II отведение: правая рука — левая нога; III отведение: левая рука —левая нога.
Рис. 120. Схема грудных отведений электрокардиограммы н кривые, получаемые при Рис. 119. Наложение электродов при стандарт- этих отведениях,
ных отведениях электрокардиограммы и кривые, получаемые при этих отведениях (схема).
Для отведения потенциалов от грудной клетки рекомендуют прикладывать первый электрод к одной из шести показанных на рис. 120 точек, а другой — к правой руке. Вторым электродом могут служить три соединенных вместе электрода, наложенных на обе руки и левую ногу. В этом случае форма ЭКГ отражает электрические изменения только на участке приложения грудного электрода. Объединенный электрод, приложенный к трем конечностям, является индифферентным, или «нулевым», так как его потенциал не изменяется на протяжении всего сердечного цикла. Такие электрокардиографические отведения, предложенные Вильсоном, называются униполярными, или однополюсными. Эти отведения обозначают латинской буквой V (Vb V2 и т. д.).
Нормальные ЭКГ человека, получаемые в стандартных отведениях, приведены на рис. 121.
На ЭКГ различают зубцы Р, Q, R, S и Т. Зубец Р представляет собой алгебраическую сумму электрических потенциалов, возникающих при возбуждении правого и левого предсердий. Комплекс зубцов QRST отражает электрические изменения, обусловленные возбуждением желудочков. Зубцы Q, R, S характеризуют начало возбуждения желудочков, а зубец Т — конец. Интервал Р—Q отражает время, необходимое для проведения возбуждения от предсердий до желудочков. Сложная кривая, отражающая процесс возбуждения желудочков, очевидно, объясняется тем, что это возбуждение охватывает желудочки не сразу. Полагают, что зубец Q обусловлен возбуждением внутренней поверхности желудочков, правой сосочковой мышцы и верхушки сердца, а зубец R — возбуждением поверхности и основания обоих желудочков. К окончанию зубца S оба желудочка целиком охвачены возбуждением, вся поверхность сердца стала электроотрицательной, и разность потенциалов между различными отделами миокарда исчезла. (Поэтому интервал S — Т находится на изоэлектрической линии.)
Зубец Т отражает процессы реполяризации, т. е. восстановление нормального мембранного потенциала клеток миокарда. Эти процессы возникают в различных клетках не строго синхронно. Вследствие этого появляется разность потенциалов между участками, миокард которых еще деполяризован (т. е. обладает отрицательным зарядом), и участками, восстановившими свой положительный заряд. Указанная разность потенциалов регистрируется в виде зубца Т. Этот зубец — самая изменчивая часть ЭКГ. Интервал
Рис. 121. Схема связи между распространением возбуждения в сердце и возникновением некоторых зубцов электрокардиограммы (а) и электрокардиограммы в трех стандартных отведениях (б).
|
между зубцом Т и последующим зубцом Р соответствует периоду покоя сердца, т. е. общей паузе и пассивному наполнению камер сердца кровью.
Общая продолжительность электрической систолы желудочков, т. е. интервалы Q—Т, почти совпадают с длительностью механической систолы (механическая систола начинается несколько позже, чем электрическая).
Электрокардиография позволяет оценить характер нарушений проведения возбуждения в сердце, Так, по интервалу от начала зубца Р и до зубца Q можно судить о том, совершается ли проведение возбуждения от предсердия к желудочку с нормальной скоростью. В норме этот интервал равен 0,12—0,18 с. Общая продолжительность зубцов Q, R, S составляет от 0,06 до 0,09 с.
Процессы деполяризации и реполяризации возникают в разных участках миокарда неодновременно, поэтому величина разности потенциалов между различными участками сердечной мышцы на протяжении сердечного цикла изменяется. Условную линию, соединяющую в каждый данный момент две точки, обладающие наибольшей разностью потенциалов, принято называть электрической осью сердца. В каждый данный момент электрическая ось сердца характеризуется определенной величиной и направлением, т. е. обладает свойствами векторной величины. Вследствие неоднородности охвата возбуждением различных отделов миокарда этот вектор изменяет свое направление. Для клинической практики оказалась полезной регистрация не только величины разности потенциалов сердечной мышцы (т. е. амплитуды зубцов на ЭКГ), но и изменений направления электрической оси сердца. Одновременная запись изменений величины разности потенциалов и направления электрической оси получило название векторэлектрокардио- граммы (ВЭКП (рис. 122).
Изменение ритма сердечной деятельности. Электрокардиография позволяет детально анализировать изменения сердечного ритма. В норме частота сердечных сокращений колеблется от 60 до 80 в минуту, при более редком ритме — брадикардии — составляет 40—50, а при более частом — тахикардии — превышает 90—100 и доходит до 150 и более в минуту. Брадикардия часто регистрируется у спортсменов в состоянии покоя, а тахикардия — при интенсивной мышечной работе и эмоциональном возбуждении.
У молодых людей наблюдается регулярное изменение ритма сердечной деятельности в связи с дыханием — дыхательная аритмия. Она состоит в том, что в конце каждого выдоха частота сокращений сердца замедляется. При некоторых патологических состояниях сердца правильный ритм у. эпизодически или регулярно нарушается внеочередным сокращением — экстрасистолой.
Экстрасистолы. Если внеочередное возбуждение возникает в синоатриальном узле в тот момент, когда рефрактерный период закончился, но очередной автоматический импульс еще не появился, наступает раннее сокращение сердца — синусовая экстрасистола. Пауза, следующая за такой экстрасистолой, длится такое же время, как и обычная.
Внеочередное возбуждение, возникшее в миокарде левого или правого желудочка, не отражается на автоматик синусно-предсердного (синоатриального) узла. Этот узел своевременно посылает очередной импульс, который достигает желудочков в тот момент, когда они еще находятся в рефрактерном состоянии после экстрасистольг; поэтому миокард желудочков не отвечает на очередной импульс, поступающий из предсердия. Затем рефрактерный период желудочков кончается и они опять могут ответить на раздражение, но проходит некоторое время, пока из синуса придет второй импульс. Таким образом, экстрасистола, вызванная возбуждением, возникшим в одном из желудочков (желудочковая экстрасистола), приводит к продолжительной, так называемой компенсаторной, паузе желудочков при неизменном ритме работы предсердий.
У человека экстрасистольг могут появиться при наличии очагов раздражения в самом миокарде, в области предсердного или желудочковых водителей ритма. Экстрасистолии могут способствовать влияния, поступающие в сердце из ЦНС.
Трепетание и мерцание сердца. В патологии можно наблюдать своеобразное состояние мышцы предсердий или желудочков сердца, называемое трепетанием и мерцанием (фибрилляция).
В подобных случаях происходят чрезвычайно быстрые и асинхронные сокращения мышечных волокон предсердий или желудочков, до 400 (при трепетании) и до 600 (при мерцании) в минуту. Главный отличительный признак фибрилляции — неодновременность сокращений отдельных мышечных волокон данного отдела сердца. При таком сокращении мышцы предсердия или желудочки сердца не могут осуществлять нагнетание крови. У человека фибрилляция желудочков смертельна, если немедленно не принять меры для ее прекращения. Наиболее эффективным способом прекращения фибрилляции желудочков является воздействие сильным (напряжением в несколько киловольт) ударом электрического тока, по-видимому, вызывающим одновременно возбуждение мышечных волокон желудочка, после чего восстанавливается синхронность их сокращений.
ЭКГ и ВЭКГ отражают изменения величины и направления потенциалов действия миокарда, но не позволяют оценить особенности нагнетательной функции сердца. Потенциалы действия мембраны клеток миокарда представляют собой лишь пусковой механизм сокращения клеток миокарда, включающий определенную последовательность внутриклеточных процессов, заканчивающихся укорочением миофибрилл. Эта серия последовательных процессов получила название сопряжения возбуждения и сокращения.
Сопряжение возбуждения и сокращения миокарда
Рис. 122. Вектор кард но грамма.
| Х-~X i — вертикальная ось; У—У1 — горизонтальная ось: 1 — петля QRS; 2 — петля Т; 3 - - петля Р; 4 — угол, отделяющий расположение петли QRS в системе прямоугольных координат; 5 — угол расхождения между максимальными лекторами петель QRS и T; 6 — максимальный вектор петли QRS. Стрелками указано направление движения луча при записи петель QRS и Т против хода часовой стрелки.
| Каждая миофибрилла сердечной (и скелетной) мышцы содержит нитевидные сократительные белки актин и миозин, расположенные таким образом, что актиновые нити находятся в длинных каналах между миозиновыми. В состоянии расслабления актино-
Мышечное во лом но
Рис. 123. Процесс сокращения миофибрилл(схема).
|
вые нити не заполняют эти каналы на всем протяжении, а входят лишь частично, несколько выступая из них. Это приводит к увеличению общей длины миофибриллы (рис. 123).
Сокращение миофибрилл — это процесс, во время которого актиновые нити втягиваются в глубь промежутков между миозиновыми нитями, что приводит к укорочению миофибриллы. Скольжение актиновых нитей по каналам вдоль миозиновых нитей осуществляется вследствие энзимохимических реакций, запускаемых ионами СА2+. На поверхности молекул белка актина находятся тонкие нити молекул белка тропомиозина, заканчивающиеся головкой, состоящей из молекулы тропонина (рис. 124).
Между толстыми миозиновыми и более тонкими актиновыми нитями существуют поперечные мостики, содержащие АТФ. Ионы Са2+, поступая в окончания тропомиозино- вых нитей, активируют тропонин и обеспечивают его способность формировать контакты поверхностей тонких и толстых нитей. При этом происходит распад АТФ и освобождающаяся энергия используется на скольжение нитей относительно друг друга и сокращение миофибрилл. Необходимые для этого ионы Са2+ поступают из цистерн саркоплазма- тического ретикулума, т. е. ячеистой сети каналов, пронизывающих саркоплазму мышечных клеток. Часть ионов инициирующих сокращение миофибрилл, поступает в клетку из межклеточной жидкости по медленным натрий-кальциевым каналам мембраны клеток.
Рис. 124. Схема, иллюстрирующая взаимоотношения между актином, тропомиозином и миозином
при мышечном сокращении.
|
Процесс расслабления миокарда начинается в результате связывания ионов Са2+ во внутриклеточных депо (цистернах саркоплазматического ретикулума), а также вследствие переноса ионов Са2+ через клеточные мембраны в межклеточную жидкость.
Дата добавления: 2015-05-19 | Просмотры: 2085 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 |
|