Щитовидная железа. Сердце (через коронарные
Почки
Печень
Сердце (через коронарные
сосуды)
Кишечник
Мозг
Селезенка Желудок
Мышцы рук и ног (в покое)
Рис. 137. Определение объемной скорости кровотока посредством окклюэиоиной плетизмографии у человека (по В. В. Орло ву).
|
В момент, отмеченный стрелкой I, повышают давление в манжете, вследствие чего прекращается венозный отток. Изменение объема конечности Н, происшедшее за время t лает возможность рассчитать количество крови, притекающее за это в ре vi я в конечность. Стрелкой 2 отмечен момент. KOijia зажатие вены прекращено.
Во время плетизмографии конечность или ее часть Помещают в герметически закрывающийся сосуд, соединенный с манометром для измерения малых колебаний давления. При изменении кровенаполнения конечности изменяется ее объем, что вызывает увеличение или уменьшение давления воздуха или воды в сосуде, в который помещена конечность; давление регистрируется манометром и записывается в виде кривой— Плетизмограммы. Для определения объемной скорости кровотока в конечности на несколько секунд сжимают вены и прерывают венозный отток. Поскольку приток крови по артериям продолжается, а венозного оттока нет, увеличение объема конечности соответствует количеству притекающей крови (рис. 137). Такая методика получила название окклюзионной (окклюзия — закупорка, зажатие) плетизмографии.
Величина кровотока в разных органах представлена в табл. 13.
Кровообращение в капиллярах
Значение капилляров в жизненных процессах состоит в том, что через их стенки происходит обмен веществ между кровью и тканями. Стенки капилляров образованы только одним слоем клеток эндотелия, снаружи которого находится тонкая соединительнотка- ная базальная мембрана.
Капилляры представляют собой тончайшие сосуды, диаметр которых равен 5—7 мкм, а длина 0,5—1,1 мм. Эти сосуды пролегают в межклеточных пространствах, тесно примыкая к клеткам органов и тканей организма. Общее количество капилляров огромно. Сум: марная длина всех капилляров тела человека составляет около 100 000 км, т. е. нить, которой можно было бы 3 раза опоясать земной шар по экватору.
Скорость кровотока в капиллярах невелика и составляемо 0,5—1 мм/с. Таким образом, каждая частица крови находится в капилляре примерно 1 с. Суммарная длина столба крови, протекающей через капилляры человека в сутки, составляет около 10 000 000 км. Количество капилляров огромно и общая их поверхность весьма значительна, примерно 1500 га. На этой поверхности слоем толщиной в 7—8 мкм находится всего 250 мл (один стакан) крови. Небольшая толщина этого слоя и тесный контакт его с клетками органов и тканей, а также непрерывная смена крови в капиллярах обеспечивают возможность обмена веществ между кровью и межклеточной жидкостью.
В тканях, отличающихся интенсивным обменом веществ, число капилляров на 1 мм2 поперечного сечения больше, чем в тканях, в которых обмен веществ менее интенсивный. Так, в сердце на 1 мм2 сечения в 2 раза больше капилляров, чем в скелетной мышце. В сером веществе мозга, где много клеточных элементов, капиллярная сеть значительно более густая, чем в белом (здесь имеются лишь нервные волокна с более низким обменом веществ).
Различают два вида функционирующих капилляров. Одни из них образуют кратчайший путь между артериолами и венулами (магистральные капилляры). Другие представляют собой боковые ответвления от первых; они отходят от артериального конца магистральных капилляров и впадают в их венозный конец. Эти боковые ответвления образуют капиллярные сети. Объемная и линейная скорость кровотока в магистральных капиллярах больше, чем в боковых ответвлениях. Магистральные капилляры играют важную роль в распределении крови в капиллярных сетях и в других феноменах микроциркуляции.
Давление крови в капиллярах измеряют прямым способом: под контролем бинокулярного микроскопа в капилляр вводят тончайшую канюлю, соединенную с электроманометром. У человека давление на артериальном конце капилляра равно 32 мм рт. ст., на венозном — 15 мм рт. ст., на вершине петли капилляра ногтевого ложа — 24 мм рт. ст. В капиллярах почечных клубочков давление достигает 65—70 мм рт. ст., а в капиллярах, оплетающих почечные канальцы, — всего 14—18 мм рт. ст. Очень невелико давление в капиллярах легких, в среднем 6 мм рт. ст. (Измерение капиллярного давления производят при таком положении тела, при котором капилляры исследуемой области находятся на одном уровне с сердцем.) При расширении артериол давление в капиллярах повышается, а при сужении понижается.
В каждом органе кровь течет лишь в «дежурных» капиллярах. Часть же капилляров выключена из кровообращения. В период интенсивной деятельности органов (например, при сокращении мышц или секреторной активности желез), когда обмен веществ в них усиливается, количество функционирующих капилляров значительно возрастает. В то же время в капиллярах начинает циркулировать кровь, богатая эритроцитами — переносчиками кислорода.
Регулирование капиллярного кровообращения нервной системой, влияние на него физиологически активных веществ — гормонов и метаболитов осуществляются посредством воздействия на артерии и артериолы. Их сужение или расширение изменяет количество функционирующих капилляров, распределение крови в ветвящейся капиллярной сети, изменяет состав крови, протекающей по капиллярам, т. е. соотношение эритроцитов и плазмы.
Артериовенозные анастомозы. В некоторых участках тела, например в коже, легких и почках, имеются непосредственные соединения артериол и вен — артериовенозные анастомозы. Это наиболее короткий путь между артериолами и венами. В обычных условиях анастомозы закрыты и кровь проходит через капиллярную сеть. Если анастомозы открываются, то часть крови может поступать в вены, минуя капилляры.
Таким образом, артериовенозные анастомозы играют роль шунтов, регулирующих капиллярное кровообращение. Примером этому является изменение капиллярного кровообращения в коже при повышении (свыше 35 °С) или понижении (ниже 15 °С) внешней температуры. Анастомозы в коже открываются и устанавливается ток крови из артериол непосредственно в вены, что играет большую роль в процессах терморегуляции.
Движение крови в венах
Движение крови в венах определяет наполнение полостей сердца во время диастолы. Ввиду небольшой толщины мышечного слоя вены имеют стенки, гораздо более растяжимые, чем стенки артерий, поэтому в них может скапливаться большое количество крови. Даже если давление в венозной системе повысится всего на несколько миллиметров, объем крови в венах увеличится в 2—3 раза, а при повышении давления в венах на 10 мм рт. ст. вместимость венозной системы возрастет в 6 раз. Вместимость вен может изменяться также при сокращении или расслаблении гладкой мускулатуры венозной стенки. Таким образом, вены (а также сосуды малого круга кровообращения) являются резервуаром крови переменной емкости. Поэтому крупные вены часто называют емкостными сосудами.
Венозное давление. Давление в венах у человека можно измерить, вводя в поверхностную (обычно локтевую) вену полую иглу и соединяя ее с чувствительным электроманометром. В венах, лежащих вне грудной полости, давление равно 5—9 мм рт. ст.
Для определения уровня венозного давления необходимо, чтобы данная вена лежала на уровне сердца. Это важно потому, что к величине кровяного давления, например в венах ног в положении стоя, присоединяется вес наполняющего вены столба крови.
В венах, расположенных вблизи грудной полости, давление близко к атмосферному и колеблется в зависимости от фазы дыхания. При вдохе, когда грудная клетка расширяется, давление понижается и становится отрицательным, т. е. ниже атмосферного. При выдохе происходят противоположные изменения и давление повышается (при обычном выдохе оно не поднимается выше 2—5 мм рт. ст.). Так как давление в венах, лежащих вблизи грудной полости (например, в яремных венах), в момент вдоха является отрицательным, ранение этих вен опасно. При вдохе возможно поступление атмосферного воздуха в полость вен и развитие воздушной эмболии, т. е. перенос пузырьков воздуха кровью и последующая закупорка ими артериол и капилляров, что может стать причиной смерти.
Скорость кровотока в венах. Кровяное русло в венозной части шире, чем в артериальной, что по законам гемодинамики должно привести к замедлению тока крови. Скорость тока крови в периферических венах среднего калибра от 6 до 14 см/с, в полых венах достигает 20 см/с.
Движение крови в венах происходит прежде всего вследствие разности давления крови в мелких и крупных венах, т. е. в начале и конце венозной системы. Эта разность, однако, невелика, и потому кровоток в венах определяется рядом добавочных факторов. Одним из них является то, что эндотелий вен (за исключением полых вен, вен воротной системы и мелких венул) образует клапаны, пропускающие кровь только по направлению к сердцу. Любая сила, сдавливая вены, вызовет передвижение крови; обратно кровь уже не пойдет вследствие наличия клапанов.
Добавочными силами, способствующими перемещению крови по венам, являются главным образом две: 1) присасывающее действие грудной клетки; 2) сокращение скелетной мускулатуры.
Венный пульс. В мелких и средних венах отсутствуют пульсовые колебания давления крови. В крупных венах вблизи сердца отмечаются пульсовые колебания — венный пульс, имеющий иное происхождение, чем артериальный пульс. Он обусловлен затруднением притока крови из вен в сердце во время систолы предсердий и желудочков. При систоле этих отделов сердца давление внутри вен повышается и происходят колебания их стенок. Удобнее всего записывать венный пульс яремной вены.
На кривой венного пульса — флебограмме — различают три зубца: а, с, v. Зубец а совпадает с систолой правого предсердия. Он вызывается тем, что в момент систолы предсердия устья полых вен зажимаются кольцом мышечных волокон, вследствие чего приток крови из вен в предсердия временно приостанавливается. Во время диастолы предсердий доступ в них крови становится снова свободным, и в это время кривая венного пульса круто падает. Вскоре на кривой венного пульса появляется небольшой зубец с. Он обусловлен толчком пульсирующей сонной артерии, лежащей вблизи яремной вены. После зубца с начинается падение кривой, которое сменяется новым подъемом — зубцом v. Последний обусловлен тем, что к концу систолы желудочков предсердия наполнены кровью и дальнейшее поступление в них крови невозможно, происходят застой крови в венах и растяжение их стенок. После зубца v наблюдается западение кривой, совпадающее с диастолой желудочков и поступлением в них крови из предсердий.
Время кругооборота крови
Время полного кругооборота крови — это время, необходимое для того, чтобы она прошла через большой и малый круги кровообращения.
Для измерения времени полного кругооборота крови применяется ряд способов, принцип которых заключается в том, что в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют, через какой промежуток времени оно появляется в одноименной вене другой стороны или вызывает характерное для него действие.
В последние годы скорость кругооборота крови по обоим кругам кровообращения (или только по малому, или только по большому кругу) определяют при помощи радиоактивного изотопа натрия и счетчика электронов. Для этого несколько таких счетчиков помещают на разных частях тела вблизи крупных сосудов и в области сердца. После введения в локтевую вену радиоактивного изотопа натрия определяют время появления радиоактивного излучения в области сердца и исследуемых сосудов.
Время полного кругооборота крови у человека составляет в среднем 27 систол сердца. При 70—80 сокращениях сердца в минуту полный кругооборот крови происходит приблизительно за 20—23 с. Не надо забывать, однако, что скорость движения крови по оси сосуда больше, чем у его стенок, а также то, что не все сосудистые области тела имеют одинаковую протяженность. Поэтому не вся кровь совершает полный кругооборот так быстро и указанное время является минимальным.
Исследования на собаках показали, что 1/5 времени полного кругооборота крови приходится на малый круг кровообращения и 4/5—на большой.
РЕГУЛЯЦИЯ ДВИЖЕНИЯ КРОВИ ПО СОСУДАМ
Каждая клетка, ткань и орган нуждаются в кислороде и питательных веществах в количествах, соответствующих величине их метаболизма, т. е. интенсивности их функции. В связи с этим тканям необходимо строго определенное количество крови в единицу времени.
Эта потребность обеспечивается благодаря поддержанию постоянного уровня артериального давления и одновременно непрерывного перераспределения протекающей крови между всеми органами и тканями в соответствии с их потребностями в каждый данный момент.
Механизмы, регулирующие кровообращение, можно подразделить на две категории: центральные, определяющие величину артериального давления и системное кровообращение, и местные, контролирующие величину кровотока через отдельные органы и ткани. Хотя такое разделение является удобным, оно в значительной мере условно, так как процессы местной регуляции осуществляются с участием центральных механизмов, а управление системным кровообращением зависит от деятельности местных регулятор- ных механизмов.
ЦЕНТРАЛЬНЫЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ КРОВООБРАЩЕНИЯ
Постоянство уровня артериального давления сохраняется благодаря непрерывному поддержанию точного соответствия между величиной сердечного выброса и величиной общего периферического сопротивления сосудистой системы, которое зависит от тонуса сосудов.
Гладкие мышцы сосудов постоянно, даже после устранения всех внешних нервных и гуморальных регуляторных влияний на сосуды, находятся в состоянии частичного сокращения. Это так называемый базалъный тонус. Возникновение его связано с тем, что в некоторых участках гладкой мускулатуры сосудистой стенки имеются очаги автоматии, генерирующие ритмические импульсы. Распространение этих импульсов на остальные гладко- мышечные клетки вызывает их возбуждение и создает базальный тонус. Кроме того, гладкие мышцы сосудистых стенок находятся под влиянием постоянной тонической им- пулъсации, поступающей по волокнам симпатических нервов. Симпатические влияния формируются в сосудодвигательном центре и поддерживают определенную степень сокращения гладкой мускулатуры сосудов.
Иннервация сосудов
Сужение артерий и артериол, снабженных преимущественно симпатическими нервами (вазоконстрикция) было впервые обнаружено Вальтером в 1842 г. в опытах на лягушках, а затем Бернаром (1852) в экспериментах на ухе кролика. Классический опыт Берна- ра состоит в том, что перерезка симпатического нерва на одной стороне шеи у кролика вызывает расширение сосудов, проявляющееся покраснением и потеплением уха оперированной стороны. Если раздражать симпатический нерв на шее, то ухо на стороне раздражаемого нерва бледнеет вследствие сужения его артерий и артериол, а температура уменьшается.
Главными сосудосуживающими нервами органов брюшной полости являются симпатические волокна, проходящие в составе п. splanchnicus. После перерезки этих нервов кровоток через сосуды брюшной полости, лишенной сосудосуживающей симпатической иннервации, резко увеличивается вследствие расширения артерий и артериол. При раздражении п. splanchnicus сосуды желудка и тонкого кишечника суживаются.
Симпатические сосудосуживающие нервы к конечностям идут в составе спинномозговых смешанных нервов, а также по стенкам артерий (в их адвентиции). Поскольку перерезка симпатических нервов вызывает расширение сосудов той области, которая ин- нервируется этими нервами, считается, что артерии и артериолы находятся под непрерывным сосудосуживающим влиянием симпатических нервов.
Чтобы восстановить нормальный уровень артериального тонуса после перерезки симпатических нервов, достаточно раздражать их периферические отрезки электрическими стимулами частотой 1—2 в секунду. Увеличение частоты стимуляции может вызвать сужение артерий, а уменьшение — расширение артерий.
Сосудорасширяющие эффекты — вазодилатацию — впервые обнаружили при раздражении нескольких нервных веточек, относящихся к парасимпатическому отделу нервной системы. Например, раздражение chorda tympani вызывает расширение сосудов подчелюстной железы и языка, п. pelvicus — расширение сосудов пещеристых тел полового члена.
В некоторых органах, например в скелетной мускулатуре, расширение артерий и артериол происходит при раздражении симпатических нервов, в составе которых имеются, кроме вазоконстрикторов и вазодилататоры. В окончаниях нервных волокон вазокон- стрикторов образуется норадреналин, являющийся здесь медиатором нервного влияния. Поэтому вазоконстрикторные нервные волокна называют адренергическими. В окончаниях симпатических нервных волокон вазодилататоров продуцируется медиатор ацетилхолин, поэтому симпатические вазодилататоры в скелетных мышцах причисляют к хо- линергическим нервным волокнам. В последнее время выявлены гистаминергические сосудорасширяющиеся нервные волокна, функция которых изучена пока недостаточно.
Расширение сосудов (главным образом кожи) можно вызвать также раздражением периферических отрезков задних корешков спинного мозга, в составе которых проходят афферентные (чувствительные) волокна. При этом расширение сосудов отмечается в тех областях кожи, чувствительные нервные волокна которых проходят в раздражаемом корешке.
Эти факты, обнаруженные в 70-х годах прошлого столетия, вызвали среди физиологов много споров. Согласно теории Бейлиса и JI. А. Орбели, одни и те же заднекорешковые волокна передают импульсы в обоих направлениях: одна веточка каждого волокна идет к рецептору, а другая — к кровеносному сосуду. Рецепторные нейроны, тела которых находятся в спинномозговых узлах, обладают двоякой функцией: передают афферентные импульсы в спинной мозг и эфферентные импульсы к сосудам. Передача импульсов в двух направлениях возможна потому, что афферентные волокна, как и все остальные нервные волокна, обладают двусторонней проводимостью.
Согласно другой точке зрения, расширение сосудов кожи при раздражении задних корешков происходит вследствие того, что в рецепторных нервных -окончаниях образуются ацетилхолин и гистамин, которые диффундируют по тканям и расширяют близлежащие сосуды. Сужение или расширение сосудов наступает под влиянием импульсов, идущих из ЦНС.
Сосудодвигательный центр
В. Ф. Овсянниковым в 1871 г. было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла — сосудодвигательный центр —находится в продолговатом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то артериальное давление не изменяется. Если перерезать мозг между продолговатым и спинным, максимальное давление крови в сонной артерии понижается до 60—70 мм рт. ст. Отсюда следует, что сосудодвигательный центр локализован в продолговатом мозге и находится в состоянии тонической активности, т. е. длительного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение артериального давления.
Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов — прессорного и депрессорного. Раздражение первого вызывает сужение артерий и подъем артериального давления, а раздражение второго — расширение артерий и падение давления.
В настоящее время считают, что депрессорный отдел сосудодвигательного центра вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов.
Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегетативной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, где образуются сосудосуживающие центры, регулирующие тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол.
Кроме сосудодвигательного центра продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.
Рефлекторная регуляция сосудистого тонуса
Как отмечалось, артерии и артериольг постоянно находятся в состоянии сужения, в значительной мере определяемого тонической активностью сосудодвигательного центра. Тонус сосудодвигательного центра зависит от афферентных сигналов, приходящих от периферических рецепторов, расположенных в некоторых сосудистых областях и на поверхности тела, а также от влияния гуморальных раздражителей, действующих непосредственно на нервный центр. Следовательно, тонус сосудодвигательного центра имеет как рефлекторное, так и гуморальное происхождение.
По классификации В. Н. Черниговского, рефлекторные изменения тонуса артерий — сосудистые рефлексы — могут быть разделены на две группы: собственные и сопряженные рефлексы. Собственные сосудистые рефлексы вызываются сигналами от рецепторов самих сосудов. Морфологическими исследованиями обнаружено большое число таких рецепторов. Особенно важное физиологическое значение имеют рецепторы, сосредоточенные в дуге аорты и в области разветвления сонной артерии на внутреннюю и наружную. Указанные участки сосудистой системы получили название сосудистых рефлексогенных зон (рис. 138).
Рецепторы, расположенные в дуге аорты, являются окончаниями центростремительных волокон, проходящих в составе открытого И. Ционом и Людвигом нерва — депрессора. Электрическое раздражение центрального конца этого нерва обусловливает падение артериального давления вследствие рефлекторного повышения тонуса ядер блуждающих нервов и рефлекторного снижения тонуса сосудосуживающего центра. В результате сердечная деятельность тормозится, а сосуды внутренних органов расширяются. Если у подопытного животного, например у кролика, перерезаны блуждающие нервы, то раздражение депрессора вызывает только рефлекторное расширение сосудов без замедления сердечного ритма.
В рефлексогенной зоне каротидного синуса расположены рецепторы, от которых идут центростремительные нервные волокна, образующие синокаротидный нерв, или
3 11ii1111111 и 11111111; ■ 111)
Рис. 139. Влияние повышения давления в изолированном каротидном синусе (методика Е. М. Моисеева) на артериальное давление собаки (по Геймансу).
Дата добавления: 2015-05-19 | Просмотры: 900 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 |
|