АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Цветовое зрение

Прочитайте:
  1. Алгоритм «Действие медицинского работника в случае выявления больного с подозрением на кишечную инфекцию (сальмонеллез, дизентерию, эшерихиоз, стафилококковая инфекция, диареи)»
  2. Алгоритм «Действие медицинского работника в случае выявления больного с подозрением на норовирусную инфекцию и алгоритм забора клинического материала»
  3. Алгоритм «Действие медицинского работника в случае выявления инфекционного больного с подозрением на анаэробную инфекцию»
  4. Американский психолог К. Изард выделяет 10 фундаментальных эмоций: интерес, радость, удивление, горе (страдание), гнев, отвращение, презрение, страх, стыд и вина (раскаяние).
  5. Бинокулярное зрение
  6. Бинокулярное зрение и стереоскопическое зрение.
  7. Бинокулярное зрение, методы его определения.
  8. Восприятие зрительных раздражителей. Цветное зрение. Световая и темновая адаптация.
  9. Восприятие пространства: острота зрения, поле зрения, бинокулярное зрение.
  10. Злата. Подозрение

На длинноволновом краю видимого спектра находятся лучи красного цвета (длина волны 723—647 н,м), на коротковолновом — фиолетового (длина волны 424—397 нм). Остальные цвета спектра (оранжевый, желтый, зеленый, зелено-голубой, синий) имеют промежуточные значения длины волны. Смешение лучей всех спектральных цветов дает белый цвет. Белый цвет может быть получен и при смешении двух так называемых парных дополнительных цветов: красного и синего, желтого и синего. Если произвести смешение цветов, взятых из разных пар, то можно получить промежуточные цвета. В результате смешения трех основных цветов спектра — красного, зеленого и синего — мо­гут быть получены любые цвета.

Теории цветоощущения. Существует ряд теорий цветоощущения; наибольшим при­знанием пользуется трехкомпонентная теория. Она утверждает существование в сетчатке трех разных типов цветовоспринимающих фоторецепторов — колбочек.

О существовании трехкомпонентного механизма восприятия цветов говорил еще М. В. Ломоносов. В дальнейшем эта теория была сформулирована в 1801 г. Т. Юнгом и затем развита Г. Гельмгольцем. Согласно этой теории, в колбочках находятся различ­ные светочувствительные вещества. Одни колбочки содержат вещество, чувствительное к красному цвету, другие — зеленому, третьи — к фиолетовому. Всякий цвет оказывает действие на все три цветоогцущающих элемента, но в разной степени. Эти возбуждения суммируются зрительными нейронами и, дойдя до коры, дают ощущение того или иного цвета.

Согласно другой теории, предложенной Э. Герингом, в колбочках сетчатки сущест­вуют три гипотетических светочувствительных вещества: 1) бело-черное, 2) красно-зеле- ное и 3) желто-синее. Распад этих веществ под влиянием света приводит к ощущению белого, красного или желтого цвета. Другие световые лучи вызывают синтез этих гипоте­тических веществ, вследствие чего появляется ощущение черного, зеленого и синего цвета.

Наиболее веские подтверждения в электрофизиологических исследованиях получила трехкомпонентная теория цветового зрения. В экспериментах на животных с помощью микроэлектродов отводились импульсы от одиночных ганглиозных клеток сетчатки при освещении ее разными монохроматическими лучами. Оказалось, что электрическая активность в большинстве нейронов возникала при действии лучей любой длины волны в видимой части спектра. Такие элементы сетчатки названы доминаторами. В других же ганглиозных клетках (модуляторах) импульсы возникали лишь при освещении лучами только определенной длины волны. Выявлено 7 модуляторов, оптимально реагирующих на свет с разной длиной волны (от 400 до 600 нм.). Р. Гранит считает, что три компонента цветовосприятия, предполагавшиеся Т. Юнгом и Г. Гельмгольцем, получаются в резуль­тате усреднения кривых спектральной чувствительности модуляторов, которые могут быть сгруппированы соответственно трем основным частям спектра: сине-фиолетовой, зеленой и оранжевой.

При измерении микроспектрофотометром поглощения лучей разной длины волны одиночной колбочкой оказалось, что одни колбочки максимально поглощают красно- оранжевые лучи, другие — зеленые, третьи — синие лучи. Таким образом, в сетчатке выявлены три группы колбочек, каждая из которых воспринимает лучи, соответствующие одному из основных цветов спектра.

Трехкомпонентная теория цветового зрения объясняет ряд психофизиологических феноменов, например последовательные цветовые образы, и некоторые факты патологии цветовосприятия (слепота по отношению к отдельным цветам). В последние годы в сет­чатке и зрительных центрах исследовано много так называемых оппонентньгх нейронов. Они отличаются тем, что действие на глаз излучений в какой-то части спектра их возбуж­дает, а в других частях спектра — тормозит. Считают, что такие нейроны наиболее эффективно кодируют информацию о цвете. Эти данные имеют много общего с постулиро­ванными Э. Герингом процессами, однако переносят их из рецепторов в нейронные слои анализатора. Противоречие между двумя теориями цветового зрения, таким образом, снимается.

Последовательные цветовые образы. Если долго смотреть на окрашенный предмет, а затем перевести взор на белую бумагу, то тот же предмет виден окрашенным в допол­нительный цвет.

Согласно трехкомпонентной теории, при длительном действии лучей определенной длины волны (определенного цвета) в колбочках, которые их воспринимают, происходит расщепление соответствующего светочувствительного вещества. Поэтому, когда после этого на глаз действует белый свет, входящие в его состав лучи той длины, которые ранее действовали на глаз, соответствующими колбочками воспринимаются хуже. В ито­ге возникает ощущение дополнительного цвета (из белого цвета вычитается тот, который действовал на глаз до этого).

Цветовая слепота. Отсутствие различения отдельных цветов — частичная цветовая слепота — было впервые описано в конце XVIII века физиком Д. Дальтоном, который сам страдал этим нарушением зрения. Это и послужило основанием для обозначения самой распространенной аномалии цветовосприятия термином «дальтонизм». Дальто­низм встречается у 8% мужчин, возникновение его обусловлено генетическим отсутствием определенных генов в определяющей пол непарной у мужчин Х-хромосоме. С целью диагностики дальтонизма исследуемому предлагают серию полихроматических таблиц или дают отобрать по цвету одинаковые предметы различных цветов. Диагно­стика дальтонизма важна при профессиональном отборе. Люди, страдающие дальто­низмом, не могут быть водителями транспорта, так как они не различают цвета свето­форов.

Существуют три разновидности частичной цветовой слепоты: протанопия, дейтерано- пия и тританопия. Каждая из них характеризуется отсутствием восприятия одного из трех основных цветов. Люди, страдающие протанопией («краснослепые»), не восприни­мают красного цвета, сине-голубые лучи кажутся им бесцветными. Лица, страдающие дейтеранопией («зеленослепые»), не отличают зеленые цвета от темно-красных и голу­бых. При тританопии — редко встречающейся аномалии цветового зрения, не воспри­нимаются лучи синего и фиолетового цвета.

Все перечисленные виды частичной цветовой слепоты хорошо объясняются трех-
компонентной теорией. Каждый из них — ре­зультат отсутствия одного из трех колбочковых цветовоспринимающих веществ. Вследствие этого у лиц, страдающих протанопией, дейтера- нопией и тританопией, зрение дихроматическое, т. е. осуществляющееся за счет сохранившихся двух фоторецепторных агентов.

Встречается и полная цветовая слепота, ах- ромазия, при которой в результате поражения колбочкового аппарата сетчатки все предметы видятся человеком лишь в разных оттенках серого цвета и внешний мир представляется ему подобным бесцветным фотографиям.


Дата добавления: 2015-05-19 | Просмотры: 882 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)