АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Фагоцитоз. И.И. Мечников, занимаясь сравнительной эмбриологией и гистологией морских беспозвоночных, в 1882 г
И.И. Мечников, занимаясь сравнительной эмбриологией и гистологией морских беспозвоночных, в 1882 г. открыл существование особого процесса в их организмах: определённые клетки, целомоциты или амебоциты, поглощали инородные частицы и в том числе микроорганизмы, попадающие во внутреннюю среду. Вокруг более крупных инородных тел эти клетки формировали отграничивающие гранулемы. Собственно открытие И.И. Мечникова состояло не в наблюдении поглощения клетками инородных частиц, а в осознании защитного значения этого процесса для всего организма, а не понимание его как пищеварительного для данной единичной клетки. Подобные процессы наблюдали и другие врачи и исследователи, в том числе в препаратах из очагов гнойного воспаления у людей, где особые белые клетки крови (лейкоциты), как амебы поглощали микроорганизмы и переваривали их внутри себя. Но принято было думать, что эти клетки болезнетворные, ибо видели их в больном месте — в очагах гнойного воспаления. Коллеги — современники И.И. Мечникова оценили его прозрение ни много ни мало как мысль гиппократовского масштаба. И.И. Мечников назвал эти клетки «пожирающими». А. Гроббен и Ф. Гейдер подсказали ему греческие корни, составившие термин «фагоциты».
Любая живая клетка, в том числе и организма млекопитающих, поглощает вещества из внешней среды через специальные каналы для метаболитов в мембране, эндоцитозом отдельных молекул, пиноцитозом. Однако фагоцитоз — это особый процесс поглощения клеткой крупных макромолекулярных комплексов или корпускулярных структур.
«Профессиональными» фагоцитами у млекопитающих являются всего два типа дифференцированных клеток — нейтрофилы и макрофаги. Фагоцит обхватывает своей мембраной поглощаемый объект (бактериальные или собственные повреждённые клетки, или иное), заключает его в мембранную везикулу, которая оказывается внутри фагоцита. Такие везикулы называют фагосомами. Цель фагоцитоза — полное биохимическое расщепление до мелких метаболитов содержимого фагосомы. Для этого у фагоцита есть специальные внутриклеточные органеллы — лизосомы, содержащие набор гидролитических ферментов с оптимумом pH примерно 4,0. В клетке фагосомы сливаются с лизосомами в фаголизосому, где и происходят реакции расщепления поглощённого материала. Кроме лизосом, в фагоцитах есть специальные ферментные системы: НАДФ–Н–оксидазы, супероксиддисмутаза, NO–синтазы, которые генерируют активные формы неорганических окислителей, — перексид водорода (Н2О2), супероксид анион (О2–), синглетный кислород (1O2), радикал гидроксила (OH–), гипохлорид (ОСl), оксид азота (NО+). Эти агрессивные окислители работают внутри клетки, а также на определённых этапах развития воспалительной реакции секретируются во внеклеточную среду.
Нейтрофилы и моноциты созревают в костном мозге из стволовой кроветворной клетки и имеют общую промежуточную клетку–предшественницу. Нейтрофилы циркулируют в периферической крови и составляют бoльшую часть лейкоцитов крови — 60–70%, или 2,5–7,5´109 клеток в 1 л крови. В норме нейтрофилы не выходят из сосудов в периферические ткани, но они первыми «бросаются» (т.е. подвергаются экстравазации) в очаг воспаления. Моноциты, напротив, являются «транспортной формой», в крови их 5–10% от общего числа лейкоцитов. Их предназначение — стать и быть оседлыми макрофагами в периферических тканях. Макрофаги локализуются в рыхлой соединительной ткани, подстилающей все покровные ткани, а также в паренхиме органов и по ходу кровеносных сосудов. Макрофаги печени называют купферовскими клетками (звездчатые ретикулоэндотелиоциты), макрофаги мозга — микроглией, макрофаги лёгких — альвеолярными и интерстициальными.
Как фагоциты «узнают», чтo им следует фагоцитировать? На доиммунном этапе защитных реакций распознающие возможности фагоцитов ограничены. И только иммунный механизм в виде синтеза АТ «приводит» к макрофагу доступное АТ разнообразие распознаваемых Аг.
Известно 5 структур — Рц на клеточной мембране макрофагов, связывающих то, что макрофаг потенциально способен поглотить по механизму фагоцитоза.
· Рц для комплемента — CR3 (интегрин CD11b/CD18) и CR4 (интегрин CD11c/CD18). Эти интегрины мембраны макрофагов, кроме компонентов комплемента, имеют химическое сродство и, следовательно, связывают ряд бактериальных продуктов: липополисахариды, липофосфогликан Leishmania, гемагглютинин из филаментов Bordetella, поверхностные структуры дрожжевых клеток родов Candida и Histoplasma.
· На тканевых макрофагах (не на моноцитах крови) есть Рц, связывающий маннозу. Такого Рц нет на других фагоцитах — нейтрофилах.
· Молекула CD14 на макрофагах — Рц для комплексов бактериальных липополисахаридов (ЛПС) с липополисахаридсвязывающим протеином сыворотки.
· Рц для производных лигандов сиаловых кислот (углеводов, характерных для клеток млекопитающих). Их называют «scavenger receptor» — Рц для «уборки мусора» (погибающих и деградирующих собственных клеток).
· Рц для «хвостов» (Fc–фрагментов) IgG — FcgRI — Fcg–Рц 1–го типа. Это как раз место сопряжения лимфоцитарного разнообразного по Аг иммунитета с эволюционно более древним механизмом защиты — фагоцитозом. В CD–номенклатуре эту поверхностную молекулу макрофагов называют CD64, и поскольку она экспрессирована только на моноцитах/макрофагах, она является мембранным маркёром клеток этой линии дифференцировки. Подклассы IgG по силе связи с FcgRI располагаются в следующем порядке: IgG3 >IgG1 >IgG4 >IgG2.
Второй механизм сопряжения лимфоцитарного иммунитета с фагоцитами состоит в том, что на мембране фагоцитов есть молекулы — Рц для активных цитокинов, вырабатываемых иммунными лимфоцитами. Через них фагоцит воспринимает сигнал от лимфоцита, и в результате происходят существенные сдвиги во внутренней «энергетике» фагоцита. Через Рц к g–ИФН и к фактору некроза опухолей (TNF) после связывания с лигандом макрофаг претерпевает сильную активацию всей своей внутренней «биохимической машины». Через Рц для ИЛ–10 макрофаг, напротив, инактивируется. Есть на макрофагах (но не на нейтрофилах) и мембранные молекулы для контактов с комплементарными мембранными молекулами лимфоцитов, т.е. для непосредственных межклеточных взаимодействий (это CD40, B7, MHC–I/II).
Назовем ещё два маркёра моноцитов/макрофагов: это CD115 — Рц для фактора роста моноцитов M–CSF (колониестимулирующий фактор моноцитов) и CD163 (Рц гемоглобина типа скевенджер, от англ. scavenger — мусорщик).
На нейтрофилах идентифицированы эксклюзивные маркёры наружной мембраны — CD66A и CD66D. Функциональные «нагрузки» этих молекул пока неизвестны. По биохимическим свойствам они попадают в семейство так называемых раково–эмбриональных белков.
Что происходит после того, как фагоцит поглотил объект извне в виде заключенного в мембрану пузырька — фагосомы? Происходят по крайней мере три процесса: расщепление поглощённого материала внутри фагоцита, продукция и секреция в межклеточное пространство литических ферментов и окислительных радикалов, продукция и секреция цитокинов.
Первый из них — расщепление того, что фагоцитировано, до мелких продуктов метаболизма, которые клетка и вслед за ней организм способны вывести через природные системы выделения (почки и ЖКТ). Этот процесс идёт по одинаковым биохимическим механизмам и в нейтрофилах, и в макрофагах. Для этого у фагоцитов есть специальный «аппарат» литических ферментов (кислых протеаз и гидролаз), заключенных в особые органеллы — лизосомы; pH в лизосомах около 4. Мембрана фагосомы сливается с мембраной лизосомы, предоставляя лизосомным ферментам доступ к фагоцитированному веществу.
В гранулах нейтрофилов содержатся литические ферменты, которые активированный нейтрофил в очаге выбрасывает в межклеточное вещество. Это коллагеназа, катепсин G, желатиназа, эластаза, фосфолипаза A2.
Кроме этого, у фагоцитов есть специальные системы ферментов, генерирующие образование реакционно-способных свободных радикалов кислорода (супероксидного аниона О2–, синглетного кислорода 1O2), а также пероксида водорода. Фермент NO–синтаза генерирует образование радикала оксида азота (NO+). Эти радикалы осуществляют деструктивные реакции применительно к фагоцитированному объекту. Но, кроме того, фагоцит секретирует их в окружающую межклеточную среду, где они оказывают травмирующее действие, в том числе и на собственные ткани (табл. 3.6).
Таблица 3. 6. Бактерицидные биохимические механизмы фагоцитов и «встречные» биохимические механизмы «сопротивления» микроорганизмов, обеспечивающие выживание и дажеразмножение микробов внутри фагоцитов макроорганизма
Приспособительныепути метаболизма
| Кислородзависимые
| Смешанные (кислород/азот)
| Азотзависимые
| В фагоцитах
| Исходный субстрат — кислород (О2)
|
| Исходный субстрат — гуанидино-NL–аргинин (RNH2)
|
| ¯ НАДФ–оксидаза
|
| ¯ NO–синтаза
|
| Супероксид (О2–)
| ® OONO– пероксинитрит анион
| Радикал оксида азота (NO+)
|
| ¯ Супероксид-дисмутаза
|
| ¯
|
| ¯ Пероксид (Н2О2) радикалы гидроксила и феррила (ОН–, FeO+)
|
| Радикал двуокиси азота (NO2–); S-нитрозотиолы; комплексы динитрозилжелеза
| У микроорганизмов*
| Каталазы, супероксиддисмутазы, пероксиредоксины, пептидил-метионинсульфоксид редуктазы, ферменты метаболизма глутатиона, глутаредоксина, тиоредоксина, трипаредоксина, трипанотиона, микотиона. Антиоксиданты (аскорбат, пируват, токоферол)
|
| Алкил-гидропероксидаз-редуктаза; флавогемоглобин; глюкозо–6–фосфат дегидрогеназа; низкомолекулярные тиолы (глутатион, гомоцистеин); антиоксиданты-регулоны; ферменты репарации ДНК (RecB, RecC)
| * На примере бактерий Salmonella typhimurium (возбудитель брюшнотифозной лихорадки) и Mycobacterium tuberculosis (возбудитель туберкулёза). У S. typhimurium в ранние сроки имеет значение метаболическое противодействие бактерий кислородзависимым бактерицидным механизмам фагоцитов, в поздние — азотзависимым бактерицидным механизмам. У М. tuberculosis имеют значение оба метаболических механизма выживания внутри фагоцитов, но более существен механизм устойчивости к азотзависимой атаке фагоцитов.
Макрофаги и нейтрофилы, активированные микробными продуктами, начинают продуцировать цитокины и другие биологически активные медиаторы. Макрофаги продуцируют интерлейкины (ИЛ–1, ИЛ–6, ИЛ–8, ИЛ–12), фактор некроза опухоли a (TNF–a), а также простагландины, лейкотриен В4 (LTB4) активирующий тромбоциты фактор (ФАТ). Нейтрофилы продуцируют TNF–a и ИЛ–12, а также хемокин ИЛ–8. Кроме того, нейтрофилы вырабатывают LTB4 и ФАТ.
Названные медиаторы из фагоцитов создают в очаге внедрения внешних субстанций доиммунное воспаление в барьерной ткани, которое обеспечивает активацию кровеносных сосудов, дендритных клеток и лимфоцитов, «подготавливающую» возможность развития лимфоцитарного иммунного ответа.
Только в макрофагах (в нейтрофилах нет) происходят образование внутри клеток комплексов из продуктов расщепления фагоцитированного вещества с собственными молекулами MHC–II и экспрессия этого комплекса на поверхность клетки с «целью» представления Аг для распознавания T–лимфоцитами. Таким образом, макрофаги способны осуществлять функции АПК.
Без лимфоцитарного иммунитета, т.е. без лимфоцитов и их продуктов — цитокинов и АТ, защитные санирующие возможности фагоцитоза, однако, ограничены. Во-первых, доиммунное воспаление в ответ на распознавание и поглощение патогенного материала в целом количественно слабое, «холодное», не мощное. Микроорганизмы земной биосферы эволюционировали (и продолжают эволюционировать) таким образом, что многие из них «не боятся» фагоцитов, многие способны жить и размножаться именно в макрофагах: это микобактерии, сальмонеллы, лейшмании, листерии, трипаносомы, легионеллы, криптококки, гистоплазмы, иерсении, простейшие, риккетсии, вирусы, в том числе ВИЧ. Поэтому позвоночным для выживания «понадобилась» система защиты от инфекций более сильная, чем просто фагоцитоз. Во-вторых, фагоциты только расходуются в конкретной защитной реакции, они не пролиферируют и им не дано «запоминать» патоген, т.е. никакого усиленного «иммунитета» в отношении повторного проникновения того же патогена в организм на уровне фагоцитов не создаётся. Это уникальное свойство приобрели в эволюции только лимфоциты. И может быть, это — главный параметр позитивного естественного отбора, закрепившего лимфоцитарный иммунитет у многоклеточных, начиная с челюстных рыб.
Однако в ряде ситуаций нельзя недооценивать, например, патофизиологические последствия доиммунной активации нейтрофилов непосредственно микробными продуктами. Так, при инфекции Toxoplasma gondii летальный некроз печени в первые 24–48 ч обусловлен «цитокиновым взрывом» именно из нейтрофилов. На нейтрофилах, как и на макрофагах, экспрессирован Рц CD14, который связывает комплексы ЛПС с ЛПC–связывающим протеином сыворотки (LBP), а также комплексы ЛПС с другими микробными продуктами (например, с эндотоксинами).
Нейтрофилы — самые многочисленные из белых клеток в циркулирующей крови. Они первыми мигрируют из сосудов в очаг поражения в ткань [за счёт быстрой экспрессии нужных молекул адгезии — VCAM–1 (лиганд на эндотелии VLA–4) и CD11b/CD18 (лиганд на эндотелии ICAM–1)]. Например, всего за 1 ч после введения в перитонеальную полость мыши сублетальной дозы Toxoplasma gondii число нейтрофилов в перитонеальной полости возрастает с 2 до 25% от общего числа лейкоцитов. В очаге они быстро активируются и секретируют радикалы кислорода и литические ферменты. Связывание лиганда с Рц CD14 на нейтрофилах активирует довольно интенсивную выработку нейтрофилами TNF–a и ИЛ–12.
Моноклональные АТ RDC6.8C5 к молекуле Gr–1, экспрессированной на нейтрофилах и эозинофилах мыши, при введении in vivo обладают свойством эффективно элиминировать гранулоциты, что позволяет использовать их в модельных экспериментах. Например, введение мышам D–галактозамина индуцирует экспрессию на клетках печени Рц для TNF–a. Если таким образом предобработанным мышам затем ввести надлежащую дозу лизата Toxoplasma gondii, то через 24–48 ч произойдёт массивная гибель клеток печени по механизму TNF–a-индуцированного апоптоза и смерть животных. Если же мышам перед введением лизата Toxoplasma gondii ввести антинейтрофильные АТ, то печень останется цела и мыши будут живы. Это свидетельствует о том, что нейтрофилы являются источником «взрывного выброса» TNF–a в ответ на попадание в организм больших количеств Аг Toxoplasma gondii. Вообще же нейтрофилы прямо реагируют на продукты следующих возбудителей инфекционных заболеваний: Toxoplasma gondii, виды Plasmodium и Leishmania, Trypanosoma cruzi, Pneumocystis carinii, Cryptosporidium parvum, Mycobacterium tuberculosis, Listeria monocytogenes, Candida albicans.
Дата добавления: 2014-12-12 | Просмотры: 1329 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 |
|