АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Программа «Геном человека»
С развитием новых технологий молекулярных исследований, основанных на быстрых методах работы с ДНК, с введением в практику молекулярно-генетических исследований компьютерных технологий сравнительного анализа строения геномов представителей разных систематических групп, с развитием техники направленного воздействия на генетический аппарат клетки и организма в целом и возможности создания искусственных ферментов по нуклеотидной последовательности фрагмента ДНК темпы развития молекулярной генетики обрели стремительный характер и привели к возникновению в конце 80-х гг. международной программы «Геном человека». Этот глобальный проект предполагал завершить определение полной последовательности всех трех миллиардов нуклеотидных звеньев, составляющих геном человека. Принятие такой программы означает, что характер развития молекулярной биологии достиг совершенно нового уровня. Произошедший качественный скачок в технологии позволяет решать принципиально новые задачи.
Более ранние молекулярно-генетические работы проводились с целью исследовать строение генов, идентифицировать их в целом геноме, изучить по возможности функцию гена и уровни его регуляции. Методы современной молекулярной генетики позволяют отследить эффект действия того или иного гена на уровне целого организма, изучать не отдельные гены, а структуры и функции целых геномов. На сегодняшний день изучены геномы 141 вируса, более 50 геномов митохондрий из разных объектов, большое количество геномов бактерий. Установлено, что бактериальный геном содержит 5-6 тыс. генов, из представителей эукариот наиболее близки к завершению изучение геномов дрожжей и нематод. Показано, что геном дрожжей имеет в своем составе около 6 тыс. генов.
Суммарная длина нуклеотидных последовательностей генома человека соответствует 3 миллиардам. По данным разных авторов, такая гигантская нуклеотидная последовательность может содержать от 50 до 100 тыс. генов. В настоящее время известна структура около 7 тыс. генов. Изучение структуры генов — не конечная цель программы. Помимо анализа последовательности нуклеотидов, проводится их картирование. Каждый ген приписывается к определенной хромосоме в строго определенное место — локус, устанавливается расстояние между генами, составляется карта хромосом человека. В настоящее время картированы около 8 тыс. генов. Увеличению скорости картирования генов на хромосомах способствует выявление маркерных последовательностей для каждой хромосомы. Эти маркерные последовательности много раз повторяются вдоль хромосомы и как бы делят ее на ограниченные участки. Работа с таким небольшим участком хромосомы облегчает процедуру выделения гена. Благодаря существованию маркерных последовательностей, геном человека разбит на отдельные фрагменты, и каждый фрагмент в случае необходимости может быть легко размножен вне организма.
Помимо задачи картирования генов и установления их структуры, программа «Геном человека» ставит цель определить структурно-функциональную взаимосвязь генов. Для решения этой задачи используются совершенно новые подходы, которые просто невозможно было представить себе несколько лет назад. Так, по дефектному ферменту, который является причиной наследственного заболевания, зная последовательность аминокислот в его составе, можно искусственно синтезировать информационную РНК, а затем соответствующий участок ДНК, идентифицировать его на хромосомной карте, выделить нативный ген и клонировать его вне организма, чтобы установить, в чем причина образования дефектного фермента. Таким способом были изучены гены дистрофии Дюшена, рака молочной железы, мутантной фенилаланингидроксилазы, являющейся причиной наследственной фенилкетонурии, и ряда других генов.
Еще один новый методический подход в изучении функции генов связан с использованием информационно-компьютерных технологий. Этот путь исследований основан на следующем предположении: если у представителей разных систематических групп имеются одинаковые по структуре гены, то они выполняют одинаковую функцию. Таким образом, была установлена причина развития рака толстой кишки у человека. Методами клонирования и картирования была изучена структура генов, отвечающих за развитие рака толстой кишки. Затем был проведен поиск в информационном поле с помощью компьютерных технологий. В процессе этого поиска была предпринята попытка найти в геноме дрожжей, который уже полностью расшифрован, гены, сходные по структуре с исследуемыми генами человека. И они были обнаружены. Оказалось, что у дрожжей такие же гены отвечают за репарацию ДНК. Таким образом, было установлено, что рак толстой кишки связан с мутациями генов, кодирующих ферменты репарации ДНК.
Важнейшую роль в структурных исследованиях генома человека играет изучение его полиморфизма. Популяционный полиморфизм генома человека является основой для понимания принципов молекулярной эволюции, механизмов возникновения патологических мутаций, для оценки факторов риска при воздействии потенциально токсических агентов окружающей среды на человеческий организм, наконец, для понимания основ различной индивидуальной восприимчивости лекарств. Эти исследования получили новый импульс с открытием полиморфных мини- и макросателлитных последовательностей ДНК, которые используют в качестве маркеров при картировании генома человека.
Новым этапом в изучении структурно-функциональных связей между генами в программе «Геном человека» является возможность клонирования крупных фрагментов генома в специальных векторах, способных размножаться в клетках вместе со встроенными в них фрагментами.
Выполнение программы «Геном человека» приближает возможность использования генной терапии для лечения патологий, связанных с изменением наследственной информации. Генная терапия основана на введении в организм больного искусственных генетических конструкций. Лечебный эффект достигается в результате работы введенного гена либо за счет подавления функции «больного» гена. Современная генная терапия делает первые шаги и имеет дело с соматическими клетками в постнатальном периоде жизни человека, но в то же время разрабатываются подходы к генной терапии клеток эмбриона.
Перспектива использования достижений программы «Геном человека» многопланова: от идентификации генов, ответственных за возникновение наследственных и приобретенных заболеваний, до развития систем лечения, основанных на введении в организм новой генетической информации, корректирующей генетические дефекты (генная терапия), и интенсивных методов диагностики, основанных на выявлении генетических дефектов, и перехода в диагностике к наиболее полному обследованию популяций для выявления предрасположенности к болезни.
Т Е М А № 4 Передача генетического материала
Материальной основой биологической преемственности поколений у человека является процесс оплодотворения: слияние гамет — яйцеклетки и сперматозоида — с образованием зиготы. Каждая из гамет приносит равное количество хромосом. Если число хромосом в гамете обозначить буквой n (гаплоидный набор), то число хромосом в зиготе будет равно 2n (диплоидный набор). Образовавшаяся зигота многократно делится митозом и дает начало новому организму. В результате каждого митотического деления из одной клетки образуются две дочерние. Число хромосом в них идентично их числу в родительской клетке, равно как и качественный набор генетического материала. Образование гамет у человека, как и у других многоклеточных эукариотических организмов, связано с мейотическим делением. В результате этого деления количество хромосом в половых клетках уменьшается в 2 раза и становится гаплоидным (n). Равные по числу хромосом, образовавшиеся гаметы отличаются друг от друга по качеству генетического материала в результате двух видов генетической рекомбинации: независимого распределения гомологичных хромосом к полюсам деления и обмена участками между гомологичными хромосомами в процессе кроссинговера.
Дата добавления: 2015-01-12 | Просмотры: 1145 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |
|