АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Популяционно-генетический метод

Прочитайте:
  1. A- Ручной метод
  2. Cовременные методы лечения миомы матки
  3. I. Иммунология. Определение, задачи, методы. История развитии иммунологии.
  4. I. Методические указания по составлению акта (заключения) судебно-психиатрической экспертизы
  5. I. Науково-методичне обгрунтування теми
  6. I. Научно-методическое обоснование темы
  7. I. Научно-методическое обоснование темы.
  8. I. ОБЩИЕ ПОЛОЖЕНИЯ МЕТОДИКИ ОБСЛЕДОВАНИЯ БОЛЬНОГО
  9. I. ОРГАНИЗАЦИОННО – МЕТОДИЧЕСКИЙ РАЗДЕЛ
  10. II) Методы исследования и симптомы поражения III, IV, VI пары ЧН

Данные, полученные при клинико-генеалогическом и близ­нецовом методах исследования, сравниваются с данными о час­тоте встречаемости признака (заболевания) в общей популяции.

Частота того или иного гена в конкретной популяции опреде­ляет и особенности накопления больных в семьях. Например, высокая частота рецессивного гена в популяции приводит к относительно высокой частоте здоровых гетерозиготных но­сителей, повышается вероятность брака аа х Аа, в котором наблюдается так называемый псевдодоминантный тип насле­дования, т.е. вероятность больных и здоровых детей будет составлять 1:1, что характерно для доминантного типа насле­дования. Частота различных рецессивных болезней зависит от концентрации мутантных генов в популяции.

Изучение генетической структуры популяции является не­обходимым этапом изучения распределения наследственных болезней в семьях.

Под популяцией в генетике понимается часть населения, занимающая одну территорию на протяжении многих поколе­ний и свободно вступающая в брак между собой. В этой группе выполняется условие панмиксии и нет изоляционных барье­ров, препятствующих свободным бракам. В такой популяции соотношение частот доминантных и рецессивных аллелей при достаточно большом размере популяции сохраняется в ряду поколений без изменений. Закон генетической стабильности выражается формулой Харди—Вайнберга:

р2АА: 2pqAa: q2aa, или (р + q)2 = 1, тогда

(p + q) = 1,

т.е. частоты доминантного А и рецессивного гена а в сумме составляют единицу и являются постоянной величиной, а соот­ношение доминантных гомозигот, гетерозигот и рецессивных гомозигот определяется как квадрат встречаемости доминант­ного аллеля, произведение доминантного и рецессивного аллелей и квадрат встречаемости рецессивного аллеля соответственно.

Популяций, полностью отвечающих требованиям идеальной генетической стабильности по Харди—Вайнбергу, в природе не существует, т.к. для выполнения вышеуказанных условий долж­ны отсутствовать мутационный процесс, естественный отбор и миграция. Однако как рабочая формула закон Харди—Вайн­берга с успехом используется в популяционно-генетических исследованиях, ибо в больших популяциях перечисленные процессы протекают достаточно медленно (в отсутствие войн и гуманитарных катастроф) и не вызывают сколько-нибудь значительных изменений соотношения частот аллелей.

Популяционно-генетический метод позволяет установить частоты генов болезней в популяции и частоту гетерозиготно­го носительства. С популяционной частотой сравниваются показатели пробандовой конкордантности при изучении соот­носительной роли наследственности и среды и пенетрантности генов близнецовым методом, а также частота болезни среди родственников различной степени родства при изучении бо­лезней с наследственной предрасположенностью.

По распространенности частот генов и связанных с ними фенотипов можно судить об адаптивной ценности отдельных генотипов.

Благодаря бракам внутри отдельных популяций опреде­ленные гены могут ограничиваться пределами конкретных популяций либо распределяться неравномерно между различ­ными популяциями. Если вступление в брак для любых членов популяции равновероятно, то такая популяция называется панмиксной. Если имеются препятствия (этнические, соци­альные, религиозные), то группы населения, различающиеся по этим параметрам, могут образовывать изоляты внутри попу­ляции. Неизбирательные по указанным признакам браки (аутбридинг) предполагают случайный подбор супругов. От­клонения от панмиксии возникают, когда браки ассортативны, т.е. супруги подбираются по какому-либо признаку, например, по общим дефектам сенсорной сферы, опорно-двигательного аппарата или по психическому недоразвитию.

В наше время браки между индивидами, страдающими нарушениями слуха или зрения, являются скорее правилом, чем исключением. Отклонения от панмиксии происходят и тогда, когда в брак вступают родственники. Такой брак называется кровнородственным (инбридинг). Близкородствен­ные браки между родственниками I степени родства (между родителями и детьми и родными братьями и сестрами) называются инцестными. Примеры таких браков можно привести лишь из истории. Так, царица Египта Клеопатра родилась от инцестного брака и состояла в браках с родными братьями. Это было связано со стремлением сохранить свою «голубую» кровь. В настоящее время такие браки повсеместно запрещены. Запрет связан с повышенным риском выявления рецессивной и полигенной патологии. Браки между родственни­ками II степени родства (дядя — племянница, тетя — племянник) распространены, в частности, в арабских странах, что обусловлено экономическими соображениями. В России частота кровнородственных браков не превышает 1% и в основном в такой брак вступают двоюродные сибсы либо родственники более отдаленных степеней родства. Таким образом, степень родства между индивидуумами в различных популяциях неодинакова. Для ее оценки пользуются коэффи­циентом инбридинга F (Райт, 1885), определяющим вероят­ность идентичности по происхождению двух любых аллелей данного локуса. Например, нужно установить вероятность того, что у супругов — дяди и племянницы имеется по одному рецессивному гену фенилкетонурии, полученному от общего предка. Таким общим предком для них является бабушка или дедушка племянницы. Вероятность того, что бабушка (дедуш­ка) передали свой ген (ФКУ) одному из своих детей, составляет 1/2. Вероятность того, что оба ребенка бабушки (дедушки) получили этот ген, составляет 1/2 х 1/2 = 1/4. Вероятность двух независимых событий равна произведению их вероятнос­тей. Вероятность того, что один из детей бабушки передал этот ген своему ребенку, составляет также 1/2. Следовательно, коэффициент инбридинга составит 1/4 х 1/2 = 1/8. Рассуждая так, можно рассчитать, что коэффициент инбридинга для браков двоюродных сибсов составит 1/16, троюродных — 1/32, четвероюродных — 1/64.

В небольших популяциях в связи с ограниченностью выбора нарастает инбредность, возникает явление «инбредной депрессии»: число гетерозигот по рецессивной болезни снижается, а гомозигот (больных) повышается. Коэффици­ент инбридинга может быть рассчитан как для популяций, так и для пары индивидов. Еще один близкий показатель, называемый коэффициентом родства (Ф), можно рассчитать только для двух индивидов. Коэффициент родства Фху — это вероятность того, что любой ген, принадлежащий индиви­ду X, идентичен гену того же локуса у индивида Y. Коэффициент родства определяет долю общих генов у пары родственников. Так, у монозиготных близнецов 100% общих генов, у родственников I степени родства (родитель—ребенок, родные сибсы) — 50% общих генов, у родственников II степени родства (дяди, тети, племянники, бабушки (дедушки), внуки) — 25% общих генов, у родственников III степени родства (двоюродные сибсы, прадедушки (прабабушки), правнуки) — 12,5% общих генов. Таким образом, долю общих генов у родственников можно определить по формуле (1/2 п), где п — степень родства.


Дата добавления: 2015-01-12 | Просмотры: 2226 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)