АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Менделирующие признаки

Прочитайте:
  1. I. Сомнительные (или предположительные) признаки
  2. II Общие признаки проявления инфекционного заболевания
  3. А) Классические признаки воспаления
  4. А. возможны признаки «печеночной диспепсии»,
  5. Абсолютные и относительные признаки проникающего ранения глазного яблока. Магнитная операция в офтальмологии.
  6. Алкогольный психоз, признаки, классификация
  7. Анатомия хрусталика. Признаки помутнения хрусталика.
  8. Асфиксия от закрытия дыхательных путей инородными телами: генез смерти, морфологические признаки, судебно-медицинская диагностика.
  9. Асфиксия от повешения: генез смерти, морфологические признаки, судебно-медицинская диагностика.
  10. Асфиксия от сдавления грудной клетки и живота: генез смерти, морфологические признаки, судебно-медицинская оценка.

Всем эукариотическим организмам присущи открытые Г.Менделем общие закономерности наследования призна­ков. Для их изучения необходимо вспомнить основные термины и поня­тия, используемые в генетике. Глав­ный постулат Менделя, который он доказал в своих известных экспери­ментах на горохе огородном, состоит в том, что каждый признак определяется парой наследственных задатков, позже получивших название аллельных ге­нов. С развитием хромосомной теории наследственности выяснилось, что аллельные гены находятся в одинаковых локусах гомологичных хромосом и ко­дируют один и тот же признак. Пара аллельных генов может быть одинако­ва (АА)или (аа),тогда говорят, что особь гомозиготна по данному призна­ку. Если же аллельные гены в паре раз­ные (Аа),то особь по данному призна­ку гетерозиготна. Совокупность генов данного организма называется геноти­пом. Правда часто под генотипом по­нимают одну или несколько пар ал­лельных генов, которые отвечают за один и тот же признак. Совокупность признаков данного организма называ­ют фенотипом, фенотип формируется в результате взаимодействия генотипа с внешней средой.

Г. Мендель ввел понятия доминант­ных и рецессивных генов. Аллель, ко­торый определяет фенотип гетерозиготы, он назвал доминантным. Напри­мер, ген Ав гетерозиготе Аа. Другой аллель, не проявляющий себя в гетеро­зиготном состоянии, назван им рецес­сивным. В нашем случае это ген а.

Основные закономерности наследования признаков по Менделю (закон единообразия гибридов первого поколения, расщепление на фенотипические классы гибридов второго поколения и независимого комбинирования генов) реализуются благодаря существованию закона чистоты гамет. Суть последнего состоит в том, что пара аллельных генов, определяющая тот илииной признак: а) никогда не смешивается; б) в процессе гаметогенеза расходится в разные гаметы, то есть в каждую из них попадает один ген из аллельной пары. Цитологически это обеспечивается мейозом: аллельные гены лежат в гомологичных хромосомах, которые в анафазе мейоза расходятся к разным полюсам и попадают в разные гаметы.

Генетика человека опирается на общие принципы, полученные первоначально в исследованиях на растениях и животных. Как и у них, у человека имеются менделирующие, т.е. наследуемые по законам, установленным Г. Meнделем, признаки. Для человека, как и для других эукариот, характерны все типы наследования: аутосомно-доминантный, аутосомно-рецессивный, наследование признаков, сцепленных с поло­выми хромосомами, и за счет взаимо­действия неаллельных генов. Разрабо­тал Г.Мендель и основной метод гене­тики — гибридологический. Он осно­ван на скрещивании особей одного ви­да, обладающих альтернативными при­знаками, и количественном анализе по­лученных фенотипических классов. Естественно, этот метод не может ис­пользоваться в генетике человека.

Первое описание аутосомно-доминантного наследования аномалий у человека дано в 1905 г. Фараби. Ро­дословная была составлена для се­мьи с короткопалостью (брахидактилией). У больных укорочены и час­тично редуцированы фаланги паль­цев рук и ног, кроме того, в результа­те укорочения конечностей, для них характерен низкий рост. Признак пере­дается от одного из родителей при­мерно половине детей, независимо от пола. Анализ родословных других се­мей свидетельствует, что брахидактилия отсутствует среди потомства ро­дителей, не являющихся носителями данного гена. Поскольку признак не может существовать в скрытом виде, следовательно, он является доминант­ным. А его проявления, независимо от пола, позволяют заключить, что он не сцеплен с полом. На основании изло­женного, можно сделать вывод, что брахидактилия определяется геном, находящимся в аутосомах, и является доминантной патологией.

Использование генеалогического метода позволило выявить доминант­ные, не сцепленные с полом признаки у человека. Это — темный цвет глаз, вьющиеся волосы, переносица с гор­бинкой, прямой нос (кончик носа смо­трит прямо), ямочка на подбородке, раннее облысение у мужчин, праворукость, способность свертывать язык в трубочку, белый локон надо лбом, «габ­сбургская губа» — нижняя челюсть уз­кая, выступающая вперед, нижняя гу­ба отвислая и полуоткрытый рот. По аутосомно-доминантному типу насле­дуются также некоторые патологичес­кие признаки человека: полидактилия или многопалость (когда на руке или ноге имеется от 6 до 9 пальцев), син­дактилия (сращение мягких или кост­ных тканей фаланг двух и более паль­цев), брахидактилия (недоразвитость дистальных фаланг пальцев, приводя­щая к короткопалости), арахнодактилия (сильно удлиненные "паучьи" пальцы, один из симптомов синдрома Марфана), некоторые формы близору­кости. Большинство носителей аутосомно-доминантной аномалии явля­ются гетерозиготами. Иногда случает­ся, что два носителя одной и той же до­минантной аномалии вступают в брак и имеют детей. Тогда четверть из них будут гомозиготами по мутантному доминантному аллелю (АА). Многие случаи из медицинской практики ука­зывают на то, что гомозиготы по доми­нантным аномалиям поражены тяже­лее, чем гетерозиготы. Например, в браке между двумя носителями брахидактилии родился ребенок, у которого не только не доставало пальцев на ру­ках и ногах, но и имелись множествен­ные уродства скелета. Он умер в возра­сте одного года. Другой ребенок в этой семье был гетерозиготным и имел обычные симптомы брахидактилии.

Аутосомно-рецессивные менделирующие признаки у человека опреде­ляются генами, локализованными в аутосомах, и могут проявиться у по­томства в браке двух гетерозигот, двух рецессивных гомозигот или гетерози­готы и рецессивной гомозиготы. Ис­следования показывают, что большин­ство браков, среди потомков которых наблюдаются рецессивные заболева­ния, происходит между фенотипически нормальными гетерозиготами (Аах Аа). В потомстве такого брака геноти­пы АА, Ааи аабудут представлены в соотношении 1:2:1, и вероятность того, что ребенок окажется пораженным, со­ставит 25%. По аутосомно-рецессивному типу наследуются мягкие прямые волосы, курносый нос, светлые глаза, тонкая кожа и резус-отрицательная первая группы крови, многие болезни обмена веществ: фенилкетонурия, галактоземия, гистидинимия и др., а так­же пигментная ксеродерма.

Пигментная ксеродерма — одно из рецессивных заболеваний — относи­тельно недавно привлекла внимание молекулярных биологов. Эта патоло­гия обусловлена неспособностью кле­ток кожи больного репарировать по­вреждения ДНК, вызванные ультра­фиолетовым излучением. В результате развивается воспаление кожи, особен­но на лице, с последующей атрофией. Наконец, развивается рак кожи, при­водящий в отсутствие лечения к ле­тальному исходу. У больных редким рецессивным заболеванием степень кровного родст­ва между родителями обычно значи­тельно выше среднего уровня в попу­ляции. Как правило, родители насле­дуют этот ген от общего предка и явля­ются гетерозиготами. Подавляющее большинство больных аутосомно-рецессивными заболеваниями — это дети двух гетерозигот.

Помимо аутосомно-доминантного и аутосомно-рецессивного типов насле­дования у человека выявляются также неполное доминирование, кодоминированиеи сверхдоминирование.

Неполное доминирование связано с промежуточным проявлением призна­ка при гетерозиготном состоянии ал­лелей (Аа). Например, большой нос определяется двумя аллелями АА,ма­ленький нос — аллелями аа,нормаль­ный нос средних размеров — Аа. По типу неполного доминирования у че­ловека наследуются выпуклость губ и размеры рта и глаз, расстояние между глазами.

Кодоминирование — это такое взаи­модействие аллельных генов, при ко­тором в гетерозиготном состоянии оказываются и работают вместе два доминантных гена одновременно, то есть каждый аллель детерминирует свой признак. Наиболее удобно рас­смотреть кодоминирование на приме­ре наследования групп крови.

Группы крови системы АВ0 опреде­ляются тремя аллелями: А, В и 0. При­чем аллели А и В являются доминант­ными, а аллель 0 — рецессивным. Попарное сочетание этих трех аллелей в генотипе дает четыре группы крови. Аллельные гены, определяющие груп­пы крови, находятся в девятой паре хромосом человека и обозначаются со­ответственно: IA, Iв и I°. Первая группа крови определяется наличием в генотипе двух рецессивных аллелей I° I°. Фенотипически это проявляется нали­чием в сыворотке крови антител альфа и бетта. Вторая группа крови может определяться двумя доминантными аллеля­ми IA IA, если человек гомозиготен, или аллелями IA I°, если он гетерозиготен. Фенотипически вторая группа крови проявляется наличием на поверхности эритроцитов антигенов группы А и присутствием в сыворотке крови анти­тел бетта. Третья группа определяется функционированием аллеля В. И в этом случае генотип может быть гете­розиготен (Iв I°) или гомозиготен (Iв Iв). Фенотипически у людей с треть­ей группой крови на поверхности эри­троцитов выявляются антигены В, а фракции белков крови содержат анти­тела альфа. Люди с четвертой группой кро­ви сочетают в генотипе два доминант­ных аллеля АВ (IA Iв), причем оба они функционируют: поверхность эритро­цитов несет оба антигена (А и В), а сы­воротка крови во избежание агглюти­нации соответствующих сывороточ­ных белков альфа и бетта не содержит. Таким образом, люди с четвертой группой крови являют примеры кодоминирования, поскольку у них одновременно работают два доминантных аллельных гена.

Явление сверхдоминирования свя­зано с тем, что в ряде случаев доми­нантные гены в гетерозиготном состо­янии проявляются сильнее, чем в го­мозиготном. Это понятие коррелирует с эффектом гетерозиса и связано с та­кими сложными признаками, как жиз­неспособность, общая продолжитель­ность жизни и др.

Таким образом, у человека, как и у остальных эукариот, известны все ти­пы взаимодействия аллельных генов и большое количество менделирующих признаков, определяемых этими взаи­модействиями. Используя менделевские законы наследования, можно рас­считать вероятность рождения детей с теми или иным моделирующими при­знаками.

Наиболее удобным методическим подходом к анализу наследования признаков в нескольких поколениях является генеалогический метод, осно­ванный на построении родословных.

Взаимодействие генов

До сих пор мы рассматривали толь­ко признаки, контролируемые моногенно. Однако на фенотипическое про­явление одного гена обычно влияют другие гены. Зачастую признаки фор­мируются при участии нескольких ге­нов, взаимодействие между которыми отражается в фенотипе.

Примером сложного взаимодейст­вия генов могут служить закономерно­сти наследования системы резус-фак­тор: резус плюс (Rh+) и резус минус (Rh-). В 1939 г. при исследовании сы­воротки крови женщины, родившей мертвый плод и имевшей в анамнезе переливание совместимой по АВ0 группе крови мужа, были обнаружены особые антитела, сходные с получаемыми при иммунизации эксперимен­тальных животных эритроцитами макаки-резус. Выявленные у больной ан­титела получили название резус-анти­тел, а ее группа крови — резус-отрица­тельной. Группа крови резус-положи­тельная определяется присутствием на поверхности эритроцитов особой группы антигенов, кодируемых струк­турными генами, несущими информа­цию о мембранных полипептидах. Ге­ны, определяющие резус-фактор, на­ходятся в первой паре хромосом чело­века. Резус-положительная группа крови является доминантной, резус-отрицательная — рецессивной. Резус-положительные люди могу быть гете­розиготными (Rh+/Rh-) или гомози­готными (Rh+/Rh+). Резус-отрица­тельные — только гомозиготными (Rh-/Rh-).

Позже выяснилось, что антигены и антитела резус фактора имеют слож­ную структуру и состоят из трех ком­понентов. Условно антигены резус-фактора обозначают буквами латин­ского алфавита С, D, Е. На основе ана­лиза генетических данных о наследова­нии резус-фактора в семьях и популя­циях была сформулирована гипотеза о том, что каждый компонент резус-фак­тора определяется своим геном, что эти гены сцеплены вместе в один локус и имеют общий оператор или промотор, который регулирует их количествен­ную экспрессию. Поскольку антигены обозначаются буквами С, D, Е, то таки­ми же строчными буквами обозначают гены, отвечающие за синтез соответст­вующего компонента.

Генетические исследования в семьях показывают возможность кроссинговера между тремя генами в локусе ре­зус-фактора у гетерозигот. Популяционные исследования выявили разно­образные фенотипы: CDE, CDe, cDE, cDe, CdE, Cde, cdE, cde. Взаимодейст­вия между генами, определяющими резус-фактор, сложные. По всей види­мости, главным фактором, определяю­щим резус-антиген, является антиген D. Он обладает гораздо большей иммуногенностью, чем антигены С и Е. Отрица­тельный резус-фактор выявляется у людей с генотипом d/d, положитель­ный — у людей с генотипом DD и D/d. У гетерозигот CDe/Cde и Cde/cDe с сочетанием генов Cde в резус-локусе экспрессия фактора D изменяется, в результате чего формируется фенотип Du со слабой реакцией в ответ на вве­дение резус-положительных антиге­нов. Следовательно, работа генов в ре­зус локусе может регулироваться количественно, и фенотипическое прояв­ление резус-фактора у резус-положи­тельных людей бывает различным: большим или меньшим.

Несовместимость по резус-фактору плода и матери способна стать причи­ной развития патологии у плода или самопроизвольного выкидыша на ран­них сроках беременности. С помощью специальных чувствительных методов удалось выявить, что во время родов около 1 мл крови плода может попа­дать в кровоток матери. Если мать — резус-отрицательная, а плод — резус-положительный, то после первых ро­дов мать будет сенсибилизирована к резус-положительным антигенам. При последующих беременностях резус-несовместимым плодом титр анти-Rh-антител в ее крови может резко возра­сти, и под влиянием их разрушающего действия у плода возникает характер­ная клиническая картина гемолитиче­ской патологии, выражающейся в ане­мии, желтухе или водянке.

В классической генетике наиболее изученными являются три типа взаи­модействия неаллельных генов: эпистаз, комплементарность и полимерия. Они определяют многие наследуемые признаки человека.

Эпистаз — это такой тип взаимодей­ствия неаллельных генов, при котором одна пара аллельных генов подавляет действие другой пары. Различают эпи­стаз доминантный и рецессивный. До­минантный эпистаз проявляется в том, что доминантный аллель в гомозигот­ном (АА)или гетерозиготном (Аа)со­стоянии подавляет проявление другой пары аллелей. При рецессивном эпистазе ингибирующий ген в рецессив­ном гомозиготном состоянии (аа)не дает возможность проявиться эпистатируемому гену. Подавляющий ген на­зывают супрессором или ингибитором, а подавляемый — гипостатическим. Этот тип взаимодействия наибо­лее характерен для генов, участвую­щих в регуляции онтогенеза и иммун­ных систем человека.

Примером рецессивного эпистаза у человека может служить «бомбейский феномен». В Индии была описана се­мья, в которой родители имели вторую (А0) и первую (00) группу крови, а их дети — четвертую (АВ) и первую (00). Чтобы ребенок в такой семье имел группу крови АВ, мать должна иметь группу крови В, но ни­как ни 0. Позже было выяснено, что в системе групп крови АВ0 имеются ре­цессивные гены-модификаторы, кото­рые в гомозиготном состоянии подав­ляют экспрессию антигенов на поверх­ности эритроцитов. Например, чело­век с третьей группой крови должен иметь на поверхности эритроцитов ан­тиген группы В, но эпистатирующий ген-супрессор в рецессивном гомози­готном состоянии (h/h) подавляет действие гена В, так что соответствую­щие антигены не образуются, и фенотипически проявляется группа крови 0. Описанный локус гена-супрессора не сцеплен с локусом АВ0. Гены-супрессоры наследуются независимо от генов, определяющих группы крови АВ0. Бомбейский феномен имеет час­тоту 1 на 13 000 среди индусов, говоря­щих на языке махарати и живущих в окрестностях Бомбея. Он распростра­нен также в изоляте на острове Реюнь­он. По-видимому, признак детермини­рован нарушением одного из фермен­тов, участвующих в синтезе антигена.

Комплементарность — это такой тип взаимодействия, при котором за признак отвечают несколько неаллельных генов, причем разное сочетание доминантных и рецессивных аллелей в их парах изменяет фенотипическое проявление признака. Но во всех слу­чаях, когда гены расположены в раз­ных парах хромосом, в основе расщеп­лений лежат цифровые законы, уста­новленные Менделем.

Так, чтобы человек имел нор­мальный слух, необходима согласо­ванная деятельность нескольких пар генов, каждый из которых может быть представлен доминантными или ре­цессивными аллелями. Нормальный слух развивается только в том случае, если каждый из этих генов имеет хотя бы один доминантный аллель в дипло­идном наборе хромосом. Если хотя бы одна пара аллелей представлена рецес­сивной гомозиготой, то человек будет глухим. Поясним сказанное простым примером. Предположим, что нор­мальный слух формирует пара генов. В этом случае людям с нормальным слухом присущи генотипы ААВВ, ААВb, АаВВ, АаВb.Наследственная глухота определяется генотипами: ааbb, Ааbb, ААbb, ааВb, ааВВ. Исполь­зуя законы Менделя для дигибридного скрещивания, легко рассчитать, что глухие родители (ааВВ х ААbb) могут иметь детей с нормальным слухом (АаВb), а нормально слышащие роди­тели при соответствующем сочетании генотипов АаВb х АаВb с высокой долей вероятности (более 40%) — глу­хих детей.

Полимерия — обусловленность оп­ределенного признака несколькими парами неаллельных генов, обладаю­щих одинаковым действием. Такие ге­ны называются полимерными. Если число доминантных аллелей влияет на степень выраженности признака, по­лимерия именуется кумулятивной. Чем больше доминантных аллелей, тем более интенсивно выражен при­знак. По типу кумулятивной полиме­рии обычно наследуются признаки, которые можно выразить количест­венно: цвет кожи, цвет волос, рост.

Цвет кожи и волос человека, а также цвет радужной оболочки глаз обеспе­чивает пигмент меланин. Формируя окраску покровов, он предохраняет ор­ганизм от воздействия ультрафиолето­вых лучей. Существует два типа мела­нинов: эумеланин (черный и темно-ко­ричневый) и феумеланин (желтый и рыжий). Меланин синтезируется в клетках из аминокислоты тирозина в несколько этапов. Регуляция синтеза осуществляется многими путями и за­висит, в частности, от скорости деле­ния клеток. При ускорении митозов клеток в основании волоса образуется феумеланин, а при замедлении — эу­меланин. Описаны некоторые формы злокачественного перерождения кле­ток кожного эпителия, сопровождаю­щиеся накоплением меланина (меланомы).

Все цвета волос, за исключением рыжих, составляют непрерывный ряд от темного до светлого (соответствен­но уменьшению концентрации мела­нина) и наследуются полигенно по ти­пу кумулятивной полимерии. Счита­ется, что эти различия обусловлены чисто количественными изменениями в содержании эумеланина. Цвет рыжих волос зависит от наличия феумеланина. Окраска волос обычно меняется с возрастом и стабилизируется с наступлением половой зрелости.

Цвет радужной оболочки глаз определяют несколько факторов. С одной стороны, он зависит от присутствия гранул меланина, а с другой — от характера отражения света. Черный и коричневый цвета обусловлены много­численными пигментными клетками в переднем слое радужной оболочки. В светлых глазах содержание пигмента значительно меньше. Преобладание голубого цвета в свете, отраженном от переднего слоя радужной оболочки, не содержащей пигмента, объясняется оп­тическим эффектом. Различное содер­жание пигмента, определяет весь диа­пазон цвета глаз.

По типу кумулятивной полимерии наследуется также пигментация кожи человека. На основе генетических ис­следований семей, члены которых имеют разную интенсивность кожной пигментации, предполагается, что цвет кожи человека определяют три или четыре пары генов.

Признание принципа взаимодейст­вия генов наводит на мысль о том, что все гены так или иначе взаимосвязаны в своем действии. Если один ген ока­зывает влияние на работу других ге­нов, то он может влиять на проявление не только одного, но и нескольких при­знаков. Такое множественное действие гена называют плейотропией. Наибо­лее ярким примером плейотропного действия гена у человека является синдром Марфана, уже упоминавшая­ся аутосомно-доминантная патология. Арахнодактилия ("паучьи" пальцы) — один из симптомов синдрома Марфа­на. Другими симптомами являются высокий рост из-за сильного удлине­ния конечностей, гиперподвижность суставов, ведущий к близорукости, подвывих хрусталика и аневризм аор­ты. Синдром с одинаковой частотой встречается у мужчин и женщин. В ос­нове указанных симптомов лежит де­фект развития соединительной ткани, возникающий на ранних этапах онто­генеза и приводящий к множествен­ным фенотипическим проявлениям.

Плейотропным действием обладают многие наледственные патологии. Оп­ределенные этапы метаболизма обес­печивают гены. Продукты метаболиче­ских реакций, в свою очередь регули­руют, а возможно, и контролируют другие метаболические реакции. По­этому нарушения метаболизма на од­ном этапе отразятся на последующих этапах, так что нарушение экспрессии одного гена окажет влияние на не­сколько элементарных признаков.


Дата добавления: 2015-01-12 | Просмотры: 2291 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.005 сек.)