Ситуационные задачи. 1. Имеются три нервных волокна
1. Имеются три нервных волокна. У одного уровень Е0=70 мВ, уровень £к=45 мВ; у второго соответственно Е0=72 мВ, £к= 58 мВ; у третьего — £0=70 мВ, £к=50 мВ. Какое из этих волокон обладает наибольшей возбудимостью? наименьшей возбудимостью? У какого из этих волокон наименьшая пороговая сила раздражителя?
2. В эксперименте обнаружено, что нервное волокно способно генерировать 300 потенциалов действия в секунду, а мышечное — максимум 100. Сделайте заключение о лабильности этих структур.
3. У пациента определили хронаксию мышцы сгибателя пальца 0,0015 с, мышцы разгибателя пальца — 0,0030 с. Сравните уровень возбудимости этих мышц.
4. Как и почему различается возбудимость волокна скелетной мышцы и нервного волокна?
5. Почему при помещении в бессолевую среду нервное волокно не генерирует возбуждения при любой силе раздражителя?
Глава 5. ФИЗИОЛОГИЯ МЫШЦ 5.1. Скелетные мышцы
Скелетные мышцы — активная часть опорно-двигательного аппарата, включающего также кости, связки, сухожилия и их сочленения. С функциональной точки зрения к двигательному аппарату можно отнести и мотонейроны, вызывающие возбуждение мышечных волокон. Аксон мотонейрона при входе в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мышечном волокне.
Мотонейрон вместе с иннервируемыми им мышечными волокнами называют нейромоторной (или двигательной) единицей (ДЕ). В глазных мышцах одна двигательная единица содержит 13—20 мышечных волокон, в мышцах туловища — со1 тни волокон, в камбаловидной мышце — 1500—2500 волокон. Мышечные волокна одной ДЕ имеют одинаковые морфофунк- циональные свойства.
Функциями скелетных мышц являются: 1) передвижение тела в пространстве; 2) перемещение частей тела относительно друг друга, втом числе осуществление дыхательных движений, обеспечивающих вентиляцию легких; 3) поддержание положения и позы тела. Кроме того, поперечно-полосатые мышцы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых питательных веществ.
Физиологические свойства скелетных мышц выделяют:
1) возбудимость. Из-за высокой поляризации мембран поперечно-полосатых мышечных волокон (90 мВ) возбудимость их ниже, чем у нервных волокон. Амплитуда потенциала действия у них (130 мВ) больше, чем удругих возбудимых клеток. Это позволяет на практике достаточно легко регистрировать биоэлектрическую активность скелетных мышц. Длительность потенциала действия составляет 3—5 мс. Этим определяется короткий период абсолютной рефрактерности мышечных волокон;
2) проводимость. Скорость проведения возбуждения вдоль мембраны мышечного волокна составляет 3—5 м/с;
3) сократимость. Представляет специфическое свойство мышечных волокон изменять свою длину и напряжение при развитии возбуждения.
Скелетные мышцы обладают также эластичностью и вязкостью.
Режимы и виды мышечных сокращений. Изотонический режим — мышца укорачивается при отсутствии возрастания ее напряжения. Такое сокращение возможно только для изолированной (удаленной из организма) мышцы.
Изометрический режим — напряжение мышцы возрастает, а длина практически не уменьшается. Такое сокращение наблюдается при попытке поднять непосильный груз.
Ауксотонический режим мышца укорачивается и возрастает ее напряжение. Такое сокращение чаще всего наблюдается при осуществлении трудовой деятельности человека. Вместо термина "ауксотонический режим" часто применяется название концентрический режим.
Выделяют два вида мышечных сокращений: одиночное и те- таническое.
Одиночное мышечное сокращение проявляется в результате развития одиночной волны возбуждения в мышечных волокнах. Этого можно достичь при воздействии на мышцу очень коротким (около 1 мс) стимулом. В развитии одиночного мышечного сокращения выделяют латентный период, фазу укорочения и фазу расслабления. Сокращение мышцы начинает проявляться через 10 мс от начала воздействия раздражителя. Этот временной интервал называют латентным периодом (рис.5.1). Затем последует развитие укорочения (длительность около 50 мс) и расслабления (50—60 мс). Считается, что на весь цикл одиночного мышечного сокращения затрачивается в среднем 0,1 с. Но следует иметь в виду, что длительность одиночного сокращения у разных мышц может сильно варьировать. Она также зависит от функционального состояния мышцы. Скорость сокращения и особенно расслабления замедляется при развитии утомления мышцы. К быстрым мышцам, имеющим короткий период одиночного сокращения, относятся мышцы языка и смыкающие веко.
Рис. 5.1. Временные соотношения разных проявлений возбуждения волокна скелетной мышцы: а — соотношение потенциала действия, выхода Са2+ в саркоплазму и сокращения: / — латентный период; 2 — укорочение; 3 — расслабление; б - соотношение потенциала действия, сокращения и уровня возбудимости
|
Под влиянием одиночного раздражителя вначале возникает потенциал действия и лишь затем начинает развиваться период укорочения. Оно продолжается и после окончания реполяризации. Восстановление исходной поляризации сарколеммы свидетельствует и о восстановлении возбудимости. Следовательно, на фоне развивающегося сокращения в мышечных волокнах можно вызвать новые волны возбуждения, сократительный эффект от которых будет суммироваться.
Тетаническим сокращением или тетанусом называют сокращение мышцы, появляющееся в результате возникновения в моторных единицах многочисленных волн возбуждения, сократительный эффект от которых суммируется по амплитуде и времени.
Различают зубчатый и гладкий тетанус. Для получения зубчатого тетануса надо стимулировать мышцу с такой частотой, чтобы каждое последующее воздействие наносилось после фазы укорочения, но до момента окончания расслабления. Гладкий тетанус получается при более частых раздражениях, когда последующие воздействия наносятся во время развития укорочения мышцы. Например, если фаза укорочения у мышцы составляет 50 мс, а фаза расслабления — 60 мс, то для получения зубчатого тетануса необходимо раздражать эту мышцу с частотой 9—19 Гц, для получения гладкого — с частотой не менее 20 Гц.
на длящееся раздражение, мышца
| 30 Гц
Частота раздражения
Рис. 5.2. Зависимость амплитуды сокращения от частоты раздражения (сила и длительность стимулов неизменны)
Для демонстрации различных видов тетануса обычно используют регистрацию сокращений изолированной икроножной мышцы лягушки на кимографе. Пример такой кимограм- мы представлен на рис. 5.2. Амплитуда одиночного сокращения минимальна, увеличивается при зубчатом тетанусе и становится максимальной — при гладком. Одной из причин такого возрастания амплитуды является то, что при возникновении частых волн возбуждения в саркоплазме мышечных волокон накапливается Са2+ стимулирующий взаимодействие сократительных белков.
При постепенном увеличении частоты раздражения нарастание силы и амплитуды сокращения мышцы идет лишь до некоторого предела — оптимума ответной реакции. Частоту раздражения, вызывающую наибольший ответ мышцы, называют оптимальной. Дальнейшее увеличение частоты раздражения сопровождается уменьшением амплитуды и силы сокращения. Это явление называют пессимумом ответной реакции, а частоты раздражения, превышающие оптимальную величину, — пессимальными. Явления оптимума и пессимума были открыты Н.Е. Введенским.
При оценке функциональной активности мышц говорят об их тонусе и фазических сокращениях. Тонусом мышцы называют состояние длительного непрерывного напряжения. При этом видимое укорочение мышцы может отсутствовать из-за того, что возбуждение возникает не во всех, а лишь в некоторых моторных единицах мышцы и они возбуждаются не синхронно. Фазическим сокращением мышцы называют кратковременное укорочение мышцы, сменяющееся ее расслаблением.
Структурно-функциональная характеристика мышечного волокна. Структурной и функциональной единицей скелетной мышцы является мышечное волокно, представляющее собой вытянутую (длиной 0,5—40 см) многоядерную клетку. Толщина мышечных волокон составляет 10— 100 мкм. Диаметр их может увеличиваться при интенсивных тренировочных нагрузках, количество же мышечных волокон может нарастать лишь до 3—4-месячного возраста.
Мембрану мышечного волокна называют сарколеммой, цитоплазму — саркоплазмой. В саркоплазме располагаются ядра, многочисленные органеллы, саркоплазматический рети- кулум, в состав которого входят продольные трубочки и их утолщения — цистерны, в которых содержатся запасы Са2+ Цистерны соседствуют с поперечными трубочками, пронизывающими волокно в поперечном направлении (рис. 5.3).
В саркоплазме вдоль мышечного волокна проходит около 2000 миофибрилл (толщиной около 1 мкм), которые включают нити, образованные сплетением молекул сократительных белков: актина и миозина. Молекулы актина образуют тонкие нити (миофиламенты), которые лежат параллельно друг другу и пронизывают своеобразную мембрану, называемую Z-линией или полоской. Z-линии расположены перпендикулярно длинной оси миофибриллы и делят миофибриллу на участки длиной 2— 3 мкм. Эти участки называют саркомерами.
Цистерна Сарколемма
Поперечная трубочка
Трубочка с-п. рет^|
Jj3H ссссс_ ззззз tccc;
;зззз ссссс
ззззз ссссс
j3333 СССС£
J3333 с с с сс_
J3333 сс с сс_
33333 ссссс
Саркомер расслаблен
Рис. 5.3. Строение саркомера мышечного волокна: Z-линии - ограничивают саркомер,/! — анизотропный (темный)диск, / — изотропный (светлый) диск, Н — зона (менее темная)
Саркомер является сократительной единицей миофибрил- лы- В центре саркомера строго упорядоченно друг над другом лежат толстые нити, сформированные молекулами миозина, flo краям саркомера аналогичным образом расположены тонкие нити актина. Концы актиновых нитей заходят между концами миозиновых нитей.
Центральная часть саркомера (ширина 1,6 мкм), в которой лежат мио- зиновые нити, под микроскопом выглядит темной. Этот темный участок прослеживается поперек всего мышечного волокна, так как саркомеры соседних миофибрилл располагаются строго симметрично друг над другом. Темные участки саркомеров получили название А-дисков от слова "анизотропный" Эти участки обладают двойным лучепреломлением в поляризованном свете. Зоны по краям А-диска, где нити актина и миозина перекрываются, кажутся темнее, чем в центре, где находятся только миозиновые нити. Этот центральный участок называют полоской Н.
Участки миофибриллы, в которых располагаются только актиновые нити, не обладают двойным лучепреломлением, они изотропны. Отсюда их название — I-диски. В центре I-диска проходит узкая темная линия, образованная Z-мембраной. Эта мембрана удерживает в упорядоченном состоянии актиновые нити двух соседних саркомеров.
В состав актиновой нити кроме молекул актина входят также белки тропомиозин и тропонин, влияющие на взаимодействие нитей актина и миозина. В молекуле миозина выделяют участки, которые называют головкой, шейкой и хвостом. В каждой такой молекуле имеется один хвост и по две головки с шейками. На каждой головке имеется химический центр, который может присоединять АТФ и участок, позволяющий связываться с актиновой нитью.
Молекулы миозина при формировании миозиновой нити сплетаются своими длинными хвостами, располагающимися в центре этой нити, а головки находятся ближе к ее концам (рис. 5.4). Шейка и головка образуют выступ, торчащий из миозиновых нитей. Эти выступы называют поперечными мостиками. Они подвижны, и благодаря таким мостикам миозиновые нити могут установить связь с актиновыми.
Когда к головке молекулы миозина присоединяется АТФ, то мостик на короткое время располагается под тупым углом относительно хвоста. В следующий момент происходит частичное расщепление АТФ и за счет этого головка приподнимается, переходит в энергизированное положение, при котором она может связываться с актиновой нитью.
Молекулы актина образуют двойную спираль Тролонин
Участок тонкой нити (вдоль цепочек актина располагаются молекулы тропомиозина, тролонин в узлах спирали)
Шейка
Хвост
| Тропомиоэин т i
Дата добавления: 2015-05-19 | Просмотры: 1673 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 |
|