Головка
12 3 4
Цикл движений головки миозина при сокращении мышцы
| миозина 0 +АТФ
Рис. 5.4. Структура нитей актина и миозина, движение головок миозина при сокращении и расслаблении мышцы. Объяснение в тексте: 1—4 — этапы цикла
Механизм сокращения мышечного волокна. Возбуждение волокна скелетной мышцы в условиях физиологической нормы вызывается только импульсами, приходящими от мотонейронов. Нервный импульс активирует нервно-мышечный синапс, вызывает возникновение ПК.П, а потенциал концевой пластинки обеспечивает генерацию потенциала действия на сарколемме.
Потенциал действия распространяется как вдоль поверхностной мембраны мышечного волокна, так и вглубь по поперечным трубочкам. При этом происходит деполяризация цистерн саркоплазматического ретикулума и открытие Са2+-каналов. Поскольку в саркоплазме концентрация Са2+ составляет 1(Г7-1(Гб М, а в цистернах она приблизительно в 10 ООО раз большая, то при открытии Са2+-каналов кальций по градиенту концентрации выходит из цистерн в саркоплазму, диффундирует к миофиламентам и запускает процессы, обеспечивающие сокращение. Таким образом, выход ионов Са2+ в саркоплазму является фактором, сопрягающим электрические и механические явления в мышечном волокне. Ионы Са2+ связываются с тропонином и это, при участии тропомио- зина, приводит к открытию (разблокировке) участков актиновой нити, которые могут связываться с миозином. После этого энергизированные головки миозина образуют мостики с актином, происходит окончательное расщепление АТФ, ранее захваченных и удерживаемых головками миозина. Получаемая от расщепления АТФ энергия идет на поворот головок миозина в направлении к центру саркомера. При таком повороте головки миозина тянут за собой актиновые нити, продвигая их между миозиновыми. За одно грёбковое движение головка может продвинуть актиновую нить на-1 % от длины саркомера. Для максимального сокращения нужны повторные гребковые движения головок. Это имеет место при достаточной концентрации АТФ и Са2+ в саркоплазме. Для повторного движения головки миозина необходимо, чтобы к ней присоединилась новая молекула АТФ. Подсоединение АТФ вызывает разрыв связи головки миозина с актином и она на мгновение занимает исходное положение, из которого может переходить к взаимодействию с новым участком актиновой нити и делать новое гребковое движение.
Такую теорию механизма мышечного сокращения назвали теорией "скользящих нитей"
Для расслабления мышечного волокна необходимо, чтобы концентрация ионов Са2+ в саркоплазме стала менее Ю-7 М/л. Это происходит за счет функционирования кальциевого насоса, который перегоняет Са2+ из саркоплазмы в ретикулум. Кроме того, для расслабления мышцы необходимо, чтобы были разорваны мостики между головками миозина и актином. Такой разрыв происходит при наличии в саркоплазме молекул АТФ и связывания их с головками миозина. После отсоединения головок эластические силы растягивают саркомер и перемещают нити актина в исходное положение. Эластические силы формируются за счет: 1) эластической тяги спиралевидных клеточных белков, входящих в структуру саркомера; 2) эластических свойств мембран саркоплазматического ретикулума и сарколеммы; 3) эластичности соединительной ткани мышцы, сухожилий и действия сил гравитации.
Сила мышц. Силу мышцы определяют по максимальной Величине груза, который она может поднять, либо по максимальной силе (напряжению), которую она может развить в условиях изометрического сокращения.
Одиночное мышечное волокно способно развить напряжение 100—200 мг. В теле примерно 15—30 млн волокон. Если бы они действовали параллельно в одном направлении и одновременно, то могли бы создать напряжение 20—30 т.
Сила мышц зависит от ряда морфофункциональных, физиологических и физических факторов.
• Сила мышц возрастает с увеличением площади их геометрического и физиологического поперечного сечения. Для определения физиологического поперечного сечения мышцы находят сумму поперечных сечений всех волокон мышцы по линии, проведенной перпендикулярно к ходу каждого мышечного волокна.
В мышце с параллельным ходом волокон (портняжная) геометрическое и физиологическое поперечные сечения равны. В мышцах с косым ходом волокон (межреберные) физиологическое сечение больше геометрического и это способствует увеличению силы мышц. Еще больше возрастает физиологическое сечение и сила у мышц с перистым расположением (большинство мышц тела) мышечных волокон.
Чтобы иметь возможность сопоставить силу мышечных волокон в мышцах с различным гистологическим строением, ввели понятие абсолютной силы мышцы.
Абсолютная сила мышцы — максимальная сила, развиваемая мышцей, в перерасчете на 1 см2 физиологического поперечного сечения. Абсолютная сила бицепса — 11,9 кг/см2, трехглавой мышцы плеча — 16,8 кг/см2, икроножной 5,9 кг/см2, гладкой — 1 кг/см2
• Сила мышцы зависит от процентного соотношения различных типов двигательных единиц, входящих в эту мышцу. Соотношение разных типов двигательных единиц в одной и той же мышце у людей неодинаково.
Выделяют следующие типы двигательных единиц: а) медленные, неутомляемые (имеют красный цвет) — обладают малой силой, но могут быть длительно в состоянии тонического сокращения без признаков утомления; б) быстрые, легко- утомляемые (имеют белый цвет) — их волокна обладают большой силой сокращения; в) быстрые, устойчивые к утомлению — имеют относительно большую силу сокращения и в них медленно развивается утомление.
У разных людей соотношение числа медленных и быстрых двигательных единиц в одной и той же мышце определено генетически и может значительно различаться. Так, в четырехглавой мышце бедра человека относительное содержание мед- денных волокон может варьировать от 40 до 98%. Чем больший процент медленных волокон в мышцах человека, тем более они приспособлены к длительной, но небольшой по мощности работе. Люди с высоким содержанием быстрых сильных моторных единиц способны развивать большую силу, но склонны к быстрому утомлению. Однако надо иметь в виду, что утомление зависит и от многих других факторов.
• Сила мышцы увеличивается при умеренном ее растяжении. Это происходит из-за того, что при умеренном растяжении саркомера (до 2,2 мкм) увеличивается количество мостиков, которые могут образоваться между актином и миозином. При растяжении мышцы в ней также развивается эластическая тяга, направленная на укорочение. Эта тяга суммируется с силой, развиваемой движением головок миозина.
• Сила мышц регулируется нервной системой путем изменения частоты импульсаций, посылаемых к мышце, синхронизации возбуждения большого числа моторных единиц, выбора типов моторных единиц. Сила сокращений увеличивается: а) при возрастании количества возбуждаемых моторных единиц, вовлекаемых в ответную реакцию; б) при увеличении частоты волн возбуждения в каждом из активируемых волокон; в) при синхронизации волн возбуждения в мышечных волокнах; г) при активации сильных (белых) моторных единиц.
Сначала (при необходимости развития небольшого усилия) активируются медленные неутомляемые моторные единицы, затем быстрые, устойчивые к утомлению. А если надо развить силу более 20—25% от максимальной, то в сокращение вовлекаются быстрые легкоутомляемые моторные единицы.
При напряжении до 75% от максимально возможного практически все моторные единицы активированы и дальнейший прирост силы идет за счет увеличения частоты импульсов, приходящих к мышечным волокнам.
При слабых сокращениях частота импульсаций в аксонах мотонейронов составляет 5—10 имп/с, а при большой силе сокращения может доходить до 50 имп/с.
В детском возрасте прирост силы идет главным образом за счет увеличения толщины мышечных волокон, и это связано с увеличением количества миофибрилл. Увеличение числа волокон незначительно.
При тренировке мышцу взрослых нарастание их силы связано с увеличением числа миофибрилл, повышение же выносливости обусловлено увеличением числа митохондрий и интенсивности синтеза АТФ за счет аэробных процессов.
Существует взаимосвязь силы и скорости укорочения. Скорость сокращения мышцы тем выше, чем больше ее длина (за счет суммации сократительных эффектов саркомеров) и зависит от нагрузки на мышцу. При увеличении нагрузки скорость сокращения уменьшается. Тяжелый груз можно поднять только при медленном движении. Максимальная скорость сокращения, достигаемая при сокращении мышц человека, около 8 м/с.
Сила сокращения мышцы снижается при развитии утомления.
Утомление и его физиологические основы. Утомлением называют временное понижение работоспособности, обусловленное предыдущей работой и исчезающее после периода отдыха.
Утомление проявляется снижением мышечной силы, скорости и точности движений, изменением показателей работы кардиореспираторной системы и вегетативных регуляций, ухудшением показателей функций центральной нервной системы. О последнем свидетельствует снижение скорости простейших психических реакций, ослабление внимания, памяти, ухудшение показателей мышления, возрастание количества ошибочных действий.
Субъективно утомление может проявляться ощущением усталости, появлением боли в мышцах, сердцебиением, симптомами одышки, желанием снизить нагрузку или прекратить работу. Симптомы усталости могут различаться в зависимости от вида работы, ее интенсивности и степени утомления. Если утомление вызвано умственной работой, то, как правило, более выражены симптомы снижения функциональных возможностей психической деятельности. При очень тяжелой мышечной работе на первый план могут выступать симптомы нарушений на уровне нервно-мышечного аппарата.
Утомление, развивающееся в условиях обычной трудовой деятельности как при мышечной, так и при умственной работе, имеет во многом сходные механизмы развития. В обоих случаях процессы утомления раньше всего развиваются в нервных центрах. Одним из показателей этого является снижение умственной работоспособности при физическом утомлении, а при умственном утомлении — снижение эффективности мышечной деятельности.
Отдыхом называют состояние покоя или выполнение новой деятельности, при которых устраняется утомление и восстанавливается работоспособность. И.М. Сеченов показал, что восстановление работоспособности происходит быстрее, если при отдыхе после утомления одной группы мышц(напри- мер, левой руки), выполнять работу другой группой мышц (правой рукой). Это явление он назвал "активным отдыхом"
Восстановлением называют процессы, обеспечивающие ликвидацию дефицита запасов энергетических и пластических веществ, воспроизведение израсходованных или поврежденных при работе структур, устранение избытка метаболитов и отклонений показателей гомеостаза от оптимального уровня.
Длительность периода, необходимого для восстановления организма, зависит от интенсивности и длительности работы. Чем больше интенсивность труда, тем через более короткое время необходимо делать периоды отдыха.
Различные показатели физиологических и биохимических процессов восстанавливаются через разное время от момента окончания физической нагрузки. Одним из важных тестов скорости восстановления является определение времени, в течение которого частота сердечных сокращений возвращается к уровню, характерному для периода покоя. Время восстановления частоты сердечных сокращений после теста с умеренной физической нагрузкой у здорового человека не должно превышать 5 мин.
При очень интенсивной физической нагрузке явления утомления развиваются не только в центральной нервной системе, но и в нервно-мышечных синапсах, а также мышцах. В системе нервно-мышечного препарата наименьшей утомляемостью обладают нервные волокна, наибольшей — нервно- мышечный синапс, промежуточное положение занимает мыш- Ца. Нервные волокна часами могут проводить высокую частоту потенциалов действия без признаков утомления. При частой Же активации синапса эффективность передачи возбуждения сначала уменьшается, а затем наступает блокада его проведения. Это происходит из-за снижения запаса медиатора и АТФ в пресинаптической терминали, снижения чувствительности постсинаптической мембраны к ацетилхолину.
Был предложен ряд теорий механизма развития утомления в очень интенсивно работающей мышце: а) теория "истощения" — израсходование запасов АТФ и источников ее образования (креатинфосфата, гликогена, жирных кислот), б)теория "удушения" — на первое место выдвигается недостаток доставки кислорода в волокна работающей мышцы; в) теория "засорения", объясняющая утомление накоплением в мышце молочной кислоты и токсичных продуктов обмена веществ. В настоящее время считается, что все эти явления имеют место при очень интенсивной работе мышцы.
Установлено, что максимальная физическая работа до развития утомления выполняется при средней тяжести и темпе труда (правило средних нагрузок). В профилактике утомления важны также: правильное соотношение периодов труда и отдыха, чередование умственной и физической работы, учет околосуточных (циркадных), годовых и индивидуальных биологических ритмов.
Мощность мышцы равна произведению мышечной силы на скорость укорочения. Максимальная мощность развивается при средней скорости укорочения мышц. Для мышцы руки максимальная мощность (200 Вт) достигается при скорости сокращения 2,5 м/с.
Дата добавления: 2015-05-19 | Просмотры: 877 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 |
|