АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

О методах патологической физиологии

Прочитайте:
  1. A- Шинировании фронтальных зубов с патологической подвижностью III ст.
  2. АНЕСТЕЗИЯ ПРИ НЕКОТОРЫХ СЛОЖНЫХ МЕТОДАХ ИССЛЕДОВАНИЯ
  3. Аттестационно-педагогические измерительные материалы по патологической анатомии для специальности «педиатрия»
  4. Борьба с ложной информацией и неверными представлениями о методах профилактики ВИЧ
  5. Введение .Предмет анатомии и физиологии.
  6. ГЛАВА 1. ОСОБЕННОСТИ СТРОЕНИЯ И ФИЗИОЛОГИИ ПЕЧЕНИ
  7. Глава 19. Элементы физиологии труда, механизмы тренировки и адаптации. Г. И. Ко-
  8. Глава 2 Острые респираторные заболевания: о физиологии
  9. ДЕ-1. Уровни организации живого организма. Методы физиологических исследований. Становление физиологии как науки.
  10. Дополнительные физикальных методах исследования

 

В названии нашей дисциплины слово "физиология" не означает, что данная наука не касается биохимических или биофизических механизмов болезней или что патофизиологам не позволено использовать, допустим, морфологические подходы и методы при изучении больного организма.

Патофизиология, безусловно, наука прагматическая, поскольку изучает причины и механизмы заболеваний, а эта тема - одна из самых насущных для человеческого ума. Хотя А.П. Чехов и уверял, что «болезни - самая неинтересная в человеке вещь», он, тем не менее, должен был признать, что «Человек любит поговорить о своих болезнях». Медицинский прагматизм делает патофизиологию методически всеядной - в данной науке используются биохимические, физиологические, иммунологические, биофизические, генетические и биологические методы и подходы. Первая теория воспаления Р. Вирхова базировалась всецело на морфологических методах и данных.(см. ниже стр. 272 и далее). Ю. Конгейм дополнил и развил ее путем классического использования физиологических опытов. И.И. Мечников создал новое направление в учении о воспалении, вообще не будучи врачом и пользуясь методами и подходами эволюционной биологии. Г. Шаде обогатил эту теорию данными, полученными с помощью физико-химических измерений в очаге воспаления. К. де Дюв, чтобы открыть участвующие в воспалении лизосомы и пероксисомы, - действовал методами электронной микроскопии. Однако, кажущаяся методическая пестрота привела к идейной стройности и единству современной теории воспаления, поскольку все эти ученые, действуя методами разных наук, фактически создали патофизиологическое знание. Несмотря на различия в методах, все они были патофизиологами. Во - первых, потому, что их интересовали одни и те же патофизиологические вопросы, а именно - с помощью каких механизмов, почему и для чего изменяется жизнедеятельность поврежденных тканей? Во-вторых, и это главное - все они применяли методики различных наук в условиях эксперимента, искусственно изменяя состояние организма или его составных частей и регистрируя последствия этого. Различие с наиболее близкой из смежных наук - патологической анатомией - заключается не в предмете, а в методе: патофизиологическое знание добывается путем экспериментов, а патологоанатомическое, в основном, методом наблюдения естественных картин, возникающих при болезни в органах и тканях. Доказательством условности этой межпредметной границы служит существующая во многих руководствах практика совместного изложения структурных основ и функциональных закономерностей патологии (см. например В.Котран, В. Kумар, С. Роббинс, Ф. Шён, 1995). Более того, многие отрасли патофизиологии в результате "гибридизации" со смежными дисциплинами превратились в обширные самостоятельные разделы - как, например иммунопатология.

Следовательно, важная методическая особенность патофизиологии - экспериментальный характер этой науки. Методологическая специфика патофизиологии, как прикладной экспериментальной медико-биологической науки создает для патофизиологов немалые трудности.

Дело в том, что профессиональные и социальные требования, предъявляемые к ученому и врачу, во многом, различны. Можно даже сказать, что врачебное мышление в клинической медицине и научное мышление в экспериментальной науке базируются на разных и притом трудно совместимых принципах. Например, высокопрофессиональный врач стремится свести к минимуму возможность ошибки и минимализировать риск в лечебно-диагностическом процессе. Но плох тот ученый, который не ошибается или боится ошибок, потому что цепь исправляемых ошибок и новых предположений и проб - это и есть содержание экспериментального патофизиологического исследования. А ведь кроме мышления, основанного на научном или медицинском профессионализме, существует еще здравый смысл, интуитивно кажущийся хорошим советчиком - особенно в такой ответственной сфере, как медицина. Тот самый друг человечества, о котором С. Хокинг (1998) метко сказал: «здравый смысл - это всего лишь предрассудки, в духе которых нас воспитывали». Непроста участь патофизиолога, которого природа его науки обязывает быть одновременно и экспериментатором, стремящимся к фундаментальному знанию, и медиком, нацеленным на прикладные интересы клиницистов. Совершенствование неинвазивных методов исследования позволило патофизиологам наблюдать патологические процессы в динамике in vivo, у пациентов и сделало возможным развитие клинической патофизиологии, преодолевающей данное противоречие.

Эксперименты, применяемые в патофизиологических исследованиях можно условно разделить на аналитические и синтетические, острые и хронические. Конечно, в любой реальной исследовательской программе все эти разновидности экспериментов совмещаются, дополняют друг друга и, порой, границы между этими видами стираются до условности.

Тем не менее, когда патофизиолог стремится промоделировать какую-либо болезнь или синдром на животных, он решает синтетическую задачу, поскольку стремится, чтобы картина экспериментальной болезни была, возможно, ближе к той природной, спонтанно существующей нозологической форме, которая им моделируется.

Например, иммунизируя кроликов гомогенатом аутологичных почек, В. К. Линдеман (1901) получил аутореактивную нефроцитотоксическую сыворотку, введение которой провоцировало у кроликов иммунопатологический гломерулонефрит, во многом, близкий к подострому злокачественному гломерулонефриту человека. М.Мазуги удалось преобразовать модель Линдемана в гетерологичную, вводя кроликам утиную противокроличью нефроцитотоксическую сыворотку (1934). П.С. и Э.С. Кэйвэлти (1945), пытаясь приблизиться к реальной эпидемиологической подоплёке наиболее распространённой формы острого гломерулонефрита человека, успешно модифицировали опыты Линдемана, вводя животным гетерологичные почечные антигены в комбинации со стрептококковым токсином и адъювантом. Несколько позже, совершенствуя эту модель, Р. Стеблей (1962) применил иммунизацию овец гетерологичными базальными мембранами клубочков почек. Новый шаг, приближающий экспериментальную патологию к адекватной модели гломерулонефрита, был совершен М. Хейманном, получившим аналог мембранозного гломерулонефрита человека у крыс, путём иммунизации щёточной каймой эпителия проксимальных извитых канальцев. В конечном итоге, был идентифицирован аутоантиген - белок gp330, компонент клатриновых эндоцитотических везикул эпителия капсулы Боумена - Шумлянского, против которого направлена аутоиммунная атака при нефрите Хейманна (Д. Керяшки, М. Фаркухар, 1982). Но оказалось, что при значительной части быстротекущих иммунопатологических гломерулонефритов человека мишенью цитотоксических антител служат совсем другие антигены, например, коллаген и коллаген-ассоциированные белки базальной мембраны или антигены эндотелия клубочковых капилляров. Таким образом, адекватность всех перечисленных моделей реальным болезням не абсолютна.

Синтетические эксперименты проводятся, как правило, in vivo. При аналитических экспериментах, наоборот, из болезни, как целостного явления, вычленяется какой - то компонент, часть, механизм - и он воспроизводится, чаще всего, invitro. Эксперименты аналитического типа позволили М. Брауну и Дж. Гольдштейну установить закономерности рецепции липопротеидов клетками сосудистой стенки и механизмы нарушений этого процесса при гиперлипопротеинемиях. Тем самым было вычленено центральное звено в механизме атерогенного действия главного фактора риска атеросклероза. Но это еще не весь атерогенез.

Адекватно промоделировать болезнь, теоретически, означает воспроизвести тот главный механизм, который вызывает ее симптомы у людей.

Так, когда Н.Н. Аничков и С.С. Халатов (1913) путем холестеринового кормления получили у кроликов атеросклеротические поражения крупных артерий, это было веским аргументом в пользу центральной роли липидов в атерогенезе у людей. Однако, без аналитических экспериментов, осуществленных через 65 лет Дж. Гольдштейном и М. Брауном, сама по себе модель, указывая на связь холестерина и атеросклероза, еще не давала исчерпывающих сведений о механизмах этой взаимосвязи.

 

Согласно общим принципам моделирования, модель никогда не бывает идентична реальному объекту. При ее создании всегда не учитываются какие-либо уже известные стороны реальности (А.Н. Горбань, Р.Г. Хлебопрос, 1988)

Адекватность каждой из моделей того или иного заболевания относительна. Отражая одни аспекты заболевания, модели могут быть лишены других черт, присущих реальной болезни. Это особенно справедливо в патофизиологии человека, поскольку из всех животных он «болеет и выздоравливает наиболее сложно» (А.Д. Адо) и рамок «животного здоровья для него не достаточно» (Н.А. Добролюбов).

Пытаясь воспроизвести у животных гипертоническую болезнь, различные экспериментаторы получали модели, верно отражающие роль того или иного из многообразных факторов риска этого заболевания. Но из-за полиэтиологического характера болезни ни одна из моделей не была достаточно всеобъемлющей. Существуют стрессорная, солевая, ликвородинамическая, почечная и другие модели гипертензии. Однако, многие из них воспроизводят острую, либо подострую гипертензию и не дают хронической (ликвородинамическая модель Х. Кушинга (1912), нейрогенная модель М. К. Петровой (1924). Дело в том, что на пути перехода острых и подострых гипертензий любого генеза в хроническую стоит мощнейший компенсаторный механизм - прессорный натрийурез. Чем выше кровяное давление, тем больше здоровая почка выделяет натрия и воды, компенсаторно подавляя активность ренина.

Таким образом, не повлияв на этот механизм, хроническую гипертензию в эксперименте получить нельзя (А. Гайтон). Подобный вывод, важный сам по себе, оказался возможен только в результате многолетних, относительно неудачных попыток промоделировать гипертоническую болезнь на животных.

Многие модели хронической гипертензии отражают только один из ее многообразных механизмов, доминирующий, скорее, при какой-либо из вторичных, симптоматических форм, а не при первичной, эссенциальной.

Например, модель Х. Гольдблатта и соавторов (1934), учитывающая ключевую роль почек в поддержании кровяного давления, прекрасно демонстрирует механизм рениновой хронической гипертензии, но ее адекватность для гипертонической болезни ставилась под сомнение, ибо остается фактом, что у больных с эссенциальной гипертензией нет первичных почечных заболеваний.

И только когда японским авторам К. Окамото и К. Аоки (1963) удалось вывести чистую линию крыс SHR, спонтанно развивающих хроническую гипертензию без каких-либо предшествующих первичных заболеваний, стало ясно, что патофизиология приблизилась к пониманию сути эссенциальной гипертензии у человека.

Оказалось, что и стресс, и солевая диета, и нефропатия - лишь факторы риска, которые могут в той или иной степени ускорить формирование первичной гипертензии, зависящей, однако, от первичного наследственного системного дефекта, изначально присутствующего в клеточных мембранах у крыс SHR. Это - дефект натриевых и кальциевых переносчиков, приводящий к тому, что клетки легко захватывают натрий и кальций, но расставаться с ними «не хотят». Вследствие этого нервные клетки крыс легко деполяризуются и крысы SHR проявляют раздражительность и агрессивность. Гладкомышечные клетки сосудов с готовностью спазмируют и трудно расслабляются, отчего крысы SHR обладают повышенной чувствительностью к прессорным стимулам. Наконец, клетки канальцевого эпителия крыс SHR, несмотря на отсутствие первичных почечных заболеваний, активно реабсорбируют и плохо отдают натрий, что ограничивает возможности прессорного натрийуреза - главного компенсаторного механизма, препятствующего переходу острых гипертензий в хронические.

Аналогичный системный дефект и сходные проявления были обнаружены в начальной стадии гипертонической болезни у пациентов с эссенциальной гипертензией (А.Джоунс, 1973, Ю.В.Постнов 1987). Итак, целостное представление о механизмах болезни в патофизиологии создается на основе ее адекватного моделирования, при этом отдельные модели могут быть, как это иллюстрируется историей экспериментальной гипертензии, последовательными ступенями приближения к той модели, которая вскрывает основной этиологический фактор или главное звено патогенеза.

Биосоциальная природа человека делает необходимым моделирование патогенного действия социальных факторов. Несмотря на всю сложность, эта задача не является принципиально неразрешимой, так как у высших животных имеется более или менее сложная психика и их сообщества иерархически организованы, что детерминирует их поведение. Основатель генетической этологии К. Лоренц, не будучи медиком, не случайно был удостоен Нобелевской премии по медицине (1973): искусственно меняя иерархическое положение животного в группе (стаде) патологам порой удается промоделировать роль социального стресса в возникновении психосоматических болезней человека. Так, спонтанный инфаркт миокарда у птиц - чрезвычайная редкость, но кардиологам удалось получить его у петуха, который изолировался от своих кур и имел фрустрирующую возможность наблюдать из клетки подвиги своего преемника.


Дата добавления: 2015-05-19 | Просмотры: 997 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.005 сек.)