АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Нарушения рецепции сигналов

Прочитайте:
  1. A) нарушения синтеза гепарина
  2. E. Нарушения ритма сердца.
  3. E74.1 Нарушения обмена фруктозы
  4. F50-F59 Поведенческие синдромы, связанные с физиологическими нарушениями и физическими факторами
  5. F59 Неуточненные поведенческие синдромы, связанные с физиологическими нарушениями и физическими факторами.
  6. F8 Нарушения психологического развития
  7. I. Алиментарные и метаболические нарушения
  8. I. Нарушения образования импульса
  9. II. Острые нарушения памяти и сознания, обусловленные алкоголем и лекарственными средствами
  10. II. Продолжительные качественные нарушения сознания

 

Даже при адекватной сигнализации клетка не в состоянии ответить должным образом, если она «слепа и глуха» по отношению к данному сигналу. Именно такая ситуация создается при отсутствии или дефиците рецепторов, соответствующих какому-либо биорегулятору. Избыточная активность (чувствительность) тех или иных рецепторов также способна привести к патологическим последствиям.

Одно из самых распространенных среди европеоидов наследственных заболеваний - семейная наследственная гиперхолестеринемия. Патологический ген в некоторых популяциях Европы и Северной Америки встречается у одного из каждых 50 индивидов. Болезнь, имеющая, согласно классификации ВОЗ, наименование - гиперлипопротеинемия второго типа, подтип «А», проявляется ранним атеросклеротическим поражением сосудов и обусловливает большинство случаев раннего инфаркта миокарда.

Патогенез столь распространенного и тяжелого нарушения связан с дефектом белка-рецептора, ответственного за распознавание клетками сосудистой стенки и некоторых других тканей и органов белкового компонента липопротеидов низкой (ЛПНП) и очень низкой плотности (ЛПОНП) - апопротеина В (рис. 14).

Согласно Брауну и Гольдштейну, в норме клетки сосудистой стенки поглощают ЛПНПи ЛПОНПпутем рецепторно-опосредованного эндоцитоза. Стимуляция рецептора апопротеина В ведет к включению в клетке, поглощающей липопротеиды, метаболических защитных программ, предохраняющих от холестериновой перегрузки. После стимуляции рецептора понижается синтез собственного холестерина, активизируется его этерификация и дренажные механизмы, способствующие обратному транспорту холестерина. При отсутствии или недостаточной экспрессии рецепторов, холестеринсодержащие субстраты все равно проникнут в клетку не специфически, благодаря слиянию липопротеидной частицы и плазматической мембраны. Клетки, лишенные возможности адаптироваться к избытку холестерина путем использования типовых, рецепторно-зависимых программ, подвергаются перегрузке этим субстратом. Ответная реакция выражается в пролиферации и пенистой трансформации гладкомышечных элементов, фибробластов и макрофагов стенки сосуда, пытающихся «утилизовать» избыток холестерина для построения новообразованных мембран. Вследствие этого формируется атеросклеротическое поражение.

Интересно, что не только наследственный дефект, но и приобретенный дефицит данных рецепторов (например, при избыточном длительном потреблении насыщенных жиров и холестерина) ведет к сходной неадекватной реакции клеток.

Избыточная активность тех или иных рецепторов также патогенна.

При развитии инсульта гибель нейронов от гипоксии сопряжена с избыточной стимуляцией рецепторов глютаминовой кислоты. Можно допустить, что адаптационный смысл этого состоит в усилении генерации окиси азота (NO) - сильного сосудорасширяющего медиатора, регулятора адгезии нейтрофилов и активности циклооксигеназы, повышающего, к тому же, содержание цГМФв клетках и резистентность НАДФН-диафоразоположительных нейронов, которые ее производят, к свободно-радикальному повреждению. Однако, рецепторы, находясь в состоянии перманентной активации, обусловливают избыточный входной ток кальция в клетку, и это ведет к повреждению и некробиозу нейронов. (см. ниже). К тому же, избыток окиси азота повреждает нейроны, не располагающие НАДФН-диафоразой и не вырабатывающие NO, так как этот метаболит ингибирует один из ферментов цикла Кребса - аконитазу. Образуемые при работе нитроксидсинтазы активные метаболиты кислорода могут формировать вместе с NO пероксинитрит (OONO). Это соединение вызывает повреждения ДНКи ковалентные модификации белков в клетках, что, в конечном итоге, запускает программу клеточной гибели - апоптоза.

 


Дата добавления: 2015-05-19 | Просмотры: 762 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.002 сек.)