АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Рекомбинация у бактерий

Прочитайте:
  1. E) колиформных бактерий
  2. L-формы бактерий, их медицинское значение
  3. S: Жгутики бактерий являются органами
  4. V. ИЗМЕНЧИВОСТЬ МИКОБАКТЕРИЙ ТУБЕРКУЛЕЗА
  5. АГРЕССИЯ ВИРУСОВ, БАКТЕРИЙ, ГРИБОВ, ДРУГИХ ПРОСТЕЙШИХ И ПАРАЗИТОВ
  6. Антибиотики, ингибирующие синтез клеточной стенки бактерий
  7. Антигенная структура бактерий. Групповые, видовые, типовые антигены. Перекрёстнореагируюшие антигены. Антигенная формула.
  8. АНТИГЕНЫ БАКТЕРИЙ
  9. Антигены, определение, основные свойства. Антигены бактерий.
  10. Бактериальное ядро. Формы обмена генетической информацией у бактерий. Изменчивость бактерий.

Генетическая рекомбинация — это взаимо­действие между двумя геномами, т. е. между двумя ДНК, обладающими различными ге­нотипами, которое приводит к образованию рекомбинантной ДНК, формированию до­чернего генома, сочетающего гены обоих родителей.

Отсутствие полового размножения и мей-оза, в процессе которых у высших организ­мов происходит рекомбинация, гаплоидный набор генов и определяют особенности ре­комбинации у бактерий. В процессе реком­бинации бактерии условно делятся на клет­ки-доноры, которые передают генетический материал, и клетки-реципиенты, которые воспринимают его. В клетку-реципиент проникает не вся, а только часть хромо­сомы клетки-донора, что приводит к фор­мированию неполной зиготы — мерозиготы. В результате рекомбинации в мерозиготе об­разуется только один рекомбинант, генотип которого представлен в основном генотипом реципиента, с включенным в него фрагмен­том хромосомы донора. Реципроктные ре-комбинанты не образуются.


По молекулярному механизму генетичес­кая рекомбинация у бактерий делится на три вида: гомологичную, сайт-специфическую и незаконную.

5.3.1. Гомологичная рекомбинация

При гомологичной рекомбинации в процессе раз­рыва и воссоединения ДНК происходит обмен меж­ду участками ДНК, обладающими высокой степенью гомологии. Гомологичная рекомбинация происхо­дит через образование промежуточного соединения, крестообразной структуры Холидея или полухиаз­мы (рис. 5.3). В полухиазме осуществляется комп­лементарное спаривание между одноцепочечными участками, принадлежащими разным родительским молекулам ДНК. Процесс гомологичной рекомби­нации находится под контролем генов, объединен-


ных в REC-систему, состоящую из генов recA,B,C,D. Продукты этих генов производят расплетание нитей ДНК и их переориентацию с образованием структу­ры Холидея, а также разрезают структуру Холидея для завершения процесса рекомбинации.

5.3.2. Сайт-специфическая рекомбинация

Происходит в определенных участках генома и не требует высокой степени гомологии ДНК. Этот тип рекомбинации не зависит от функционирования генов recA,B,C,D. Примером этого типа рекомби­нации является встраивание плазмиды в хромосому бактерий, которое происходит между идентичными IS-элементами хромосомы и плазмиды, интеграция ДНК фага в хромосому Е. coli. Сайт-специфическая рекомбинация, происходящая в пределах одного репликона, участвует также в переключении актив-


Рис, 5.4. Схемы: 1 — конъюгации у бактерий; 2 — трансдукции; 3 — трансформации


ности генов. Например, у сальмонелл следствием этого процесса являются фазовые вариации жгути­кового Н-антигена.

5.3.3. Незаконная или репликативная рекомбинация

Незаконная или репликативная рекомбинация не зависит от функционирования генов recA,B,C,D. Примером ее является транспозиция подвижных ге­нетических элементов по репликону или между реп-ликонами, при этом, как уже было отмечено в разд. 5.1.3, транспозиция подвижного генетического эле­мента сопровождается репликацией ДНК.

Рекомбинация у бактерий является конечным эта­пом передачи генетического материала между бакте­риями, которая осуществляется тремя механизмами: конъюгацией (при контакте бактерий, одна из кото­рых несет конъюгативную плазмиду), трансдукцией (при помощи бактериофага), трансформацией (при помощи высокополимеризованной ДНК) (рис. 5.4).


Дата добавления: 2015-08-26 | Просмотры: 1098 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)