АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

ГЛАВА 306. ВРОЖДЕННЫЕ НАРУШЕНИЯ ОБМЕНА АМИНОКИСЛОТ

Прочитайте:
  1. A) нарушения синтеза гепарина
  2. E Расстройство всех видов обмена веществ
  3. E. Нарушения ритма сердца.
  4. E74.1 Нарушения обмена фруктозы
  5. F50-F59 Поведенческие синдромы, связанные с физиологическими нарушениями и физическими факторами
  6. F59 Неуточненные поведенческие синдромы, связанные с физиологическими нарушениями и физическими факторами.
  7. F8 Нарушения психологического развития
  8. I. Алиментарные и метаболические нарушения
  9. I. Врожденные кисты средостения.
  10. I. Врожденные неопластические образования

 

Леон Е. Розенберг (Leon Е. Rosenberg)

 

 

Все полипептиды и белки представляют собой полимеры 20 различных амино­кислот. Восемь из них, называемые незаменимыми, не синтезируются в организме человека, поэтому их необходимо вводить с пищевыми продуктами. Остальные образуются эндогенно. Несмотря на то что большая часть содержащихся в организме аминокислот связана в белках, все же внутри клетки содержатся не­большие пулы свободных аминокислот, которые находятся в равновесии с их внеклеточными резервуарами в плазме, спинномозговой жидкости и просветах кишечника и почечных канальцев. С физиологической точки зрения, аминокисло­ты — это нечто большее, чем просто «строительные блоки». Одни из них (глицин, у-аминомасляная кислота) выполняют функцию нейромедиаторов, другие (фенил­аланин, тирозин, триптофан, глицин) служат предшественниками гормонов, ко­ферментов, пигментов, пуринов и пиримидинов. Каждая аминокислота распадается своим собственным путем, в результате чего ее азотистые и углеродные компоненты используются для синтеза других аминокислот, углеводов и липидов.

Современные представления о врожденных метаболических болезнях в значи­тельной мере основываются на результатах изучения нарушений обмена амино­кислот. В настоящее время известно более 70 врожденных аминоацидопатий; число рассматриваемых в настоящей и следующей главах нарушений катаболизма аминокислот (примерно 60) намного превосходит количество нарушений их транспорта (примерно 10), обсуждаемых в гл. 308. Каждое из этих нарушений встречается редко; их частота колеблется от 1:10000 для фенилкетонурии до 1:200 000 для алкаптонурии. Однако их суммарная частота составляет, вероятно, 1:500—1:1000 живых новорожденных.

Скрытые признаки врожденных нарушений катаболизма аминокислот приве­дены в табл. 306-1. Как правило, эти нарушения называют по веществу, накапли­вающемуся в наибольших концентрациях в крови (-емии) или моче (-урии). При многих состояниях определяется избыток аминокислоты-предшественника, при других накапливаются продукты ее распада. Естественно, что характер нару­шения зависит от места ферментативного блока, обратимости реакций, проте­кающих выше поврежденного звена, и существования альтернативных путей «утеч­ки» метаболитов. Для некоторых аминокислот, таких как серосодержащие или с разветвленной цепью, известны нарушения почти каждого этапа катаболизма, для других же в наших знаниях остается еще много пробелов. Аминоацидопатиям свойственна биохимическая и генетическая гетерогенность. Так, различают четыре формы гиперфенилаланинемии, три варианта гомоцистинурии и пять типов метил-малоновой ацидемии. Все эти варианты представляют не только химический, но и клинический интерес.

Проявления аминоацидопатий широко варьируют (см. табл. 306-1). При неко­торых из них, например при саркозин- или гиперпролинемии, клинические по­следствия, по-видимому, вообще отсутствуют. На противоположном краю ряда находятся состояния (полная недостаточность орнитинтранскарбамилазы или дегидрогеназы кетокислот с разветвленной цепью), которые без лечения приводят к смерти новорожденных. Более чем в половине случаев при нарушениях страдает функция центральной нервной системы, что проявляется отставанием в развитии, судорогами, расстройствами чувствительности или поведенческими сдвигами. При многих аномалиях мочевинного цикла после приема белковой пищи появляются рвота, неврологические нарушения и гипераммониемия. Метаболический кетоаци­доз, часто сопровождающийся гипераммониемией, обычно выявляют при наруше­ниях обмена аминокислот с разветвленной цепью. Отдельные нарушения приводят к локальным повреждениям тканей и органов, например печени, почек (недоста­точность), кожи или глаз.

Клинические проявления многих состояний можно предотвратить или осла­бить при ранней диагностике и своевременном начале адекватного лечения (огра­ничение белка и аминокислот в диете или добавки витаминов). Именно поэтому среди больших контингентов новорожденных проводится скрининг на аминоаци­допатий с использованием разнообразных химических и микробиологических методов анализа крови или мочи. Предположительный диагноз можно подтвердить прямым ферментным методом с использованием экстрактов лейкоцитов, эритро­цитов, культуры фибробластов или ткани печени, а также исследованиями по ДНК—ДНК-гибридизации. Последний подход был применен для диагностики и характеристики фенилкетонурии, недостаточности орнитинтранскарбамилазы, цит­руллинемии и пропионовой ацидемии. По мере достижения успехов в клониро­вании других генов анализ, основанный на использовании ДНК, должен будет применяться все чаще. Некоторые нарушения (цистиноз, разветвленно-цепочечная кетоацидурия, пропионовая ацидемия, метилмалоновая ацидемия, фенилкетонурия, недостаточность орнитинтранскарбамилазы, цитруллинемия и аргининсукциновая

 

Таблица 306-1. Врожденные нарушения катаболизма аминокислот

 

Амино­кислота Состояние Аномальный фермент Клинические проявления'
задержка психиче­ского раз­вития нейропсихические расстрой­ства непере­носи­мость белка метаболи­ческий кетоаци­доз интокси­кация аммо­нием другие способ наследо­вания2
Ароматические — гетероциклические
Фенилала­нин Классическая фенилкетонурия Гидроксилаза фенилаланина + + Гипопигмента-ция кожи и волос, экзема АР
Доброкачест­венная гиперфенилаланинемия То же                         АР
Транзиторная гиперфенилала-нинемия »»                     (АР)
Вариант фенил­кетонурии Дигидроптеридинредуктаза + +     (АР)
Вариант фенил­кетонурии Дигидробиоптеринсинтетаза (?) + +                 (АР)
Тирозин Гипертирозинемия Тирозинаминотрансфераза (ци­тозоль) +                 Кератоз ладон­ных поверхностей, дистрофия рого­вицы (АР)
Тирозиноз То же (?) Злокачествен­ная миастения ?
Наследственная тирозинемия Неизвестен                     Цирроз, пече­ночная недоста­точность, дис­функция почеч­ных канальцев АР
Алкаптонурия Оксидаза гомо- Охроноз, артрит АР
        гентизиновой кис­лоты                              
Альбинизм (глаза и кожа) Тирозиназа                 Гипопигмента-ция волос, кожи и глазного дна АР  
Альбинизм (глаза) Неизвестен Гипопигмента-ция глазного дна ХС  
Триптофан Триптофанурия » 4- +             Светочувстви­тельная кожная сыпь АР  
Ксантуреновая ацидурия Кинурениназа ?     ?  
Гистидин Гистидинемия Гистидин — ам­моний — лиаза ± Нарушение слу­ха и речи АР  
Урокановая ацидурия Урокиназа + +     ?  
Формиминоглу-таминовая ациду­рия Формимино-трансфераза ? +                 (АР)  
Глицин—иминокислоты  
Глицин Гиперглицине-мия Расщепление глицина + +     АР  
Саркозинемия Саркозиндегид-рогеназа     АР  
Гипероксалурия (тип I) а- Кетоглутарат: глиоксалаткарбо-лигаза                     Почечная недо­статочность АР  
Гипероксалурия (тип II) Дегидрогеназа D-глицериновой кислоты                     Кальцийокса-латный нефроли­тиаз, почечная не­достаточность АР  
Иминокис­лоты Гиперпролинемия (тип I) Пролиноксидаза ' —     АР  
Гиперпролинемия (тип II) А' -Пирролинде-гидрогеназа         АР  
    Гипергидроксипролинемия Гидроксипро-линредуктаза —.     АР  
Иминопептидурия Пролидаза +                 Дерматит со струпьями, эрите­мой, экхимозами АР  
Серосодержащие аминокислоты  
Метионин Гиперметиони-немия Метионин-аде-нозил-трансфе-раза         ?  
Гомоцис-тин Гомоцистин­урия Цистионин-р-синтаза ± ±             Дислокация хрусталиков, ос­теопороз, тромбоз сосудов АР  
Гомоцистинурия 5,10-метилентет-рагидрофолат-ре-дуктаза ± ±.                 (АР)  
Гомоцистинурия и метилмалоновая ацидемия (коба­ламин С, D, Е)3 Кобаламин (ви­тамин В 12)-редук­таза (цитозоль) (?) ± ±             Мегалобластная анемия (АР)  
Цистатио-нин Цистатионин-урия Цистатионаза ±     АР  
Цистин Цистиноз Неизвестен                     Синдром Фан­кони, почечная не­достаточность, фотофобия АР  
8-Сульфо-Ь-цистеин 8-Сульфо-Ь-цистеин-, суль­фит- и тиосуль-фатурия Сульфитокси-даза + +             Дислокация АР хрусталика  
Основные аминокислоты  
Лизин Гиперлизинемия (тип I) Лизивдегидро-геназа + + +     ?  
Гиперлизинемия (тип II) Лизин: а-кето-глютаратредуктаза ± ± ——             АР  
Сахаропинурия Сахаропинде-гидрогеназа ——             ?  
Гидроксилизи-немия Неизвестен + ——         (АР)  
Пипеколиновая ацидемия » + +             Гепатомегалия, дисплазия зри­тельных дисков    
а-кетоадипиновая ацидурия Декарбоксилаза а-кетоадипиновой кислоты ± ± ——             ?  
Глютаровая ацидурия (тип I) Глутарил-КоА-дегидрогеназа +     АР  
Глютаровая ацидурия (тип II) Дегидрогеназа среднецепочечно-го ацилКоА (?)     ч-             Гипогликемия ?  
Орнитин Гиперорнити не-мия (тип I) Орнитиндекар-боксилаза + + + +     (АР)  
Гиперортинемия (тип II) Орнитинамино-трансфераза                     Извилистая ат­рофия сосудистой оболочки и сет­чатки глаза АР  
Мочевинный цикл  
Карбамил-фосфат Гипераммоние­мия (тип I) Карбамилфос-фатсинтетаза I + + + +     АР Yf  
N-Ацетил-глутамат Гипераммоние­мия (тип IA) N-Ацетилглута-матсинтетаза ? + +     +     Л.\^  
Орнитин Гипераммоние­мия (тип II) Орнитинтранс-карбамилаза ± + + +     АР  
Цитруллин Цитруллинемия Аргининсукци-натсинтетаза + + + +     АР  
Аргинин-янтарная Аргининянтар-ная ацидурия Аргининсукци-наза + + + 4-     АР  
кислота Аргинин Аргининемия Аргиназа + + + +          
С разветвленной цепью  
Валин Гипервалинемия Валинамино-трансфераза + + +     ?  
Лейцин, изолейцин Гиперлейци ни -золейцинемия Лейцинизолей-ци наминотранс -фераза + + +             ?  
Валин, лейцин, изо­лейцин Классическая разветвленно-це-почечная кетоаци-ДУрия Дегидрогеназа кетокислот с раз­ветвленной цепью + + +         Запах кленово­го сиропа АР  
    Перемежаю­щаяся разветвлен-но-цепочечная ке-тоацидурия Дегидрогеназа кетокислот с раз­ветвленной цепью ±     + +         АР  
Лейцин Изовалериано-вая ацидемия Изовалерил-КоА-Дегидроге­наза ± ± + + ± Запах пота ног АР  
                                                                                                   

 

Плюс означает постоянный признак, плюс—минус—непостоянный, минус—его отсутствие,?—неизвестно. Все это относится к проявлениям болезни у нелеченых больных.

2 АР — аутосомный рецессивный; (АР) — предположительно аутосомный рецессивный; ХС — сцепленный с Х-хромосомой. Обозначения в скобках относятся к группам комплементации. ацидурия) можно диагностировать in utero с помощью химического анализа или ДНК—ДНК-блотгибридизации с использованием культуры клеток амниотической жидкости. Далее в настоящей и следующей главах будут обсуждаться отдельные нарушения, обусловленные аминоацидопатиями.

 

 

Гиперфенилаланинемии

 

Определение. Гиперфенилаланинемии (см. табл. 306-1) обусловлены наруше­нием превращения фенилаланина в тирозин. Наиболее важной из них является фенилкетонурия, характеризующаяся повышенной концентрацией фенилаланина в крови, а также его побочных продуктов (особенно фенилпирувата, фенилацtтата, фениллактата и фенилацетилглютамина) в моче и выраженной отсталостью пси­хического развития.

Этиология и патогенез. Любая из Гиперфенилаланинемии обусловливается снижением активности ферментного комплекса, называемого фенилаланингидроксилазой. В заметных количествах этот комплекс обнаружен только в печени и почках. Субстратами фермента служат фенилаланин и молекулярный кислород, а кофактором — восстановленный птеридин (тетрагидробиоптерин). Продукты ферментативной реакции — тирозин и дигидробиоптерин. Последний вновь превращается в тетрагидробиоптерин под действием другого фермента дигидроптеридинредуктазы. При классической фенилкетонурии активность апофермента гидроксилазы снижена почти до нуля, но ген гидроксилазы все же присут­ствует и не подвергается крупной перестройке или делеции. Доброкачественная гиперфенилаланинемия связана с менее выраженной недостаточностью фермента, а транзиторная гиперфенилаланинемия (иногда называемая транзиторной фенилке­тонурией) обусловливается задержкой созревания апофермента гидроксилазы. Однако при двух вариантах фенилкетонурии стойкое нарушение гидроксилирующей активности определяется не дефектом апогидроксилазы, а отсутствием тетрагидробиоптерина. Недостаточность тетрагидробиоптерина может быть вызвана двумя причинами: блокадой синтеза биоптерина из его предшественников и недостаточ­ностью дигидроптеридинредуктазы, восстанавливающей тетрагидробиоптерин из ди-гидробиоптерина.

Все варианты Гиперфенилаланинемии в целом встречаются с частотой при­мерно 1:10000 новорожденных. Классическая фенилкетонурия, на долю которой приходится почти половина всех случаев, представляет собой аутосомный рецес­сивный признак и широко распространена среди представителей европеоидной популяции и жителей Востока. Среди представителей негроидной популяции она встречается редко. Активность фенилаланингидроксилазы у облигатных гетерозигот ниже, чем в норме, но выше, чем у гомозигот. Гетерозиготные носители клини­чески здоровы, хотя концентрация фенилаланина в плазме у них обычно несколько повышена. Другие Гиперфенилаланинемии, по-видимому, также наследуются как аутосомный рецессивный признак.

Прямым следствием нарушения гидроксилирования являются накопление фенилаланина в крови и моче и снижение образования тирозина. У нелеченых лиц с фенилкетонурией и ее вариантами, обусловленными недостаточностью тетра­гидробиоптерина, концентрация фенилаланина в плазме достигает уровня, достаточ­но высокого (более 200 мг/л) для активации альтернативных путей метаболизма с образованием фенилпирувата, фенилацётата, фениллактата и других производных, которые быстро подвергаются почечному клиренсу и выводятся с мочой. Уровень других аминокислот в плазме умеренно снижен, что объясняется, вероятно, тор­можением их всасывания в желудочно-кишечном тракте или нарушением реабсорб­ции из почечных канальцев в условиях избыточного содержания фенилаланина в жидких средах организма. Выраженное повреждение мозга может быть связано с рядом эффектов избытка фенилаланина: лишением мозга других аминокислот, необходимых для синтеза белка, нарушением образования или стабилизации полирибосом, снижением синтеза миелина и недостаточным синтезом норадрена­лина и серотонина. Фенилаланин представляет собой конкурентный ингибитор тирозиназы — ключевого фермента на пути синтеза меланина. Блокада этого пути наряду с уменьшением доступности предшественника меланина (тирозина) обус­ловливает недостаточную пигментацию волос и кожи.

Клинические проявления. У новорожденных никаких отклонений от нормы не отмечают. Однако оставленные без лечения дети с классической фенилкетонурией отстают в развитии, и у них обнаруживают прогрессирующие нарушения функций головного мозга. Большинство из них из-за гиперактивности и судорог, сопро­вождающих резкое отставание в психическом развитии, нуждаются в госпитали­зации в первые несколько лет жизни. Клинические признаки дополняются изме­нениями на электрокардиограмме, «мышиным» запахом кожи, волос и мочи (вслед­ствие накопления фенилаланина) и склонностью к гипопигментации и экземе. В отличие от этого у детей, у которых диагноз был установлен сразу после родов и быстро начато лечение, все эти признаки отсутствуют. Детям с транзиторной гиперфенилаланинемией или доброкачественным ее вариантом не грозят какие-либо клинические последствия из тех, что отмечаются при классической фенилкетонурии у нелеченых больных. С другой стороны, дети с недостаточностью тетрагидробиоп­терина находятся в наиболее неблагоприятных условиях. У них рано начинаются судороги, а затем развивается прогрессирующая дисфункция головного мозга и базальных ганглиев (ригидность мышц, хорея, спазмы, гипотензия). Несмотря на ранний диагноз и стандартное лечение, все они погибают в первые несколько лет жизни от вторичной инфекции.

Иногда нелеченые женщины с фенилкетонурией достигают зрелости и рожают. Более 90 % детей в этом случае отстают в психическом развитии, у многих из них выявляют другие врожденные аномалии, например микроцефалию, задержку роста и пороки сердца. Поскольку эти дети представляют собой гетерозиготы, а не гомозиготы по мутации, обусловливающей фенилкетонурию, клинические про­явления у них следует отнести на счет повреждений, связанных с повышенной концентрацией фенилаланина у матери и воздействием избытка этой аминокислоты на протяжении внутриутробного периода.

Диагностика. У новорожденного концентрация фенилаланина в плазме может быть в пределах нормы при всех типах Гиперфенилаланинемии, но после начала кормления белком она быстро увеличивается и обычно уже на 4-й день превышает норму. Поскольку диагностику и начало диетических мероприятий необходимо осуществлять до того, как ребенок достигнет месячного возраста (если иметь в виду профилактику психического отставания), то в Северной Америке и Европе проводится скрининг большинства новорожденных с определением концентрации фенилаланина в крови по методу Гутри (ингибирование роста бактерий). Дети, у которых уровень фенилаланина повышен, подвергаются дальнейшему обследова­нию с использованием более чувствительных количественных флюорометрических или хроматографических методов. При классической фенилкетонурии и недостаточ­ности тетрагидробиоптерииа концентрация фенилаланина, как правило, превышает. 200 мг/л. При транзиторной или доброкачественной Гиперфенилаланинемии она обычно ниже, хотя и выше цифр в контроле (менее 10 мг/л). Отличить классиче­скую фенилкетонурию от ее доброкачественных вариантов помогают последователь­ные серийные определения концентрации фенилаланина в плазме как функции возраста и диетических ограничений. При транзиторной Гиперфенилаланинемии уровень этой аминокислоты нормализуется в течение 3—4 мес. При доброкачест­венной Гиперфенилаланинемии диетические ограничения сопровождаются более заметным снижением уровня фенилаланина в плазме, чем при классической фенилкетонурии. У каждого ребенка с гиперфенилаланинемией, у которого, не­смотря на ранний диагноз и диетическое лечение, прогрессируют неврологические признаки, следует подозревать недостаточность тетрагидробиоптерина. Подтвердить диагноз этих вариантов, на долю которых приходится 1—5 % всех случаев фенил­кетонурии, можно с помощью ферментативного метода с использованием культуры фибробластов. С терапевтической точки зрения, однако, более важен тот факт, что пероральное введение тетрагидробиоптерина позволяет отличать детей с классиче­ской фенилкетонурией (у которых при этом уровень фенилаланина не снижается) от больных с недостаточностью тетрагидробиоптерина (у которых концентрация фенилаланина в плазме резко уменьшается). В настоящее время классическую фенилкетонурию можно диагностировать пренатально по полиморфизму 'длины рестрикционных фрагментов, идентифицируемому с помощью ДНК—ДНК-блот­гибридизации.

Лечение. Именно при классической фенилкетонурии было впервые выявлено, что уменьшение накопления «виновного» метаболита предотвращает развитие клинической симптоматики. Это уменьшение достигается с помощью специальной диеты, в которой основная масса белка заменена на искусственную смесь амино­кислот, содержащую лишь небольшое количество фенилаланина. Обогащая эту диету некоторым количеством натуральных продуктов, можно подобрать такое количество фенилаланина в ней, которое окажется достаточным для нормального роста, но недостаточным для существенного повышения уровня фенилаланина в крови. Обычно концентрацию фенилаланина поддерживают на уровне между 30—120 мг/л.

До тех пор, пока не появится уверенность в безопасности отмены диетического лечения в каком-либо возрасте, ограничения в питании следует продолжать. При транзиторной и доброкачественной формах гиперфенилаланинемии не требуется длительных диетических ограничений. С другой стороны, как уже отмечалось, состояние детей с недостаточностью тетрагидробиоптерина ухудшается, несмотря на ограничения фенилаланина в диете. Эффективность заместительного введения птеридинового кофактора находится в стадии изучения.

 

 


Дата добавления: 2015-02-02 | Просмотры: 943 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 | 526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 | 576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 | 626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 | 651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 | 676 | 677 | 678 | 679 | 680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 | 748 | 749 | 750 | 751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 | 770 | 771 | 772 | 773 | 774 | 775 | 776 | 777 | 778 | 779 | 780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 | 800 | 801 | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 809 | 810 | 811 | 812 | 813 | 814 | 815 | 816 | 817 | 818 | 819 | 820 | 821 | 822 | 823 | 824 | 825 | 826 | 827 | 828 | 829 | 830 | 831 | 832 | 833 | 834 | 835 | 836 | 837 | 838 | 839 | 840 | 841 | 842 | 843 | 844 | 845 | 846 | 847 | 848 | 849 | 850 | 851 | 852 | 853 | 854 | 855 | 856 | 857 | 858 | 859 | 860 | 861 | 862 | 863 | 864 | 865 | 866 | 867 | 868 | 869 | 870 | 871 | 872 | 873 | 874 | 875 | 876 | 877 | 878 | 879 | 880 | 881 | 882 | 883 | 884 | 885 | 886 | 887 | 888 | 889 | 890 | 891 | 892 | 893 | 894 | 895 | 896 | 897 | 898 | 899 | 900 | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 908 | 909 | 910 | 911 | 912 | 913 | 914 | 915 | 916 | 917 | 918 | 919 | 920 | 921 | 922 | 923 | 924 | 925 | 926 | 927 | 928 | 929 | 930 | 931 | 932 | 933 | 934 | 935 | 936 | 937 | 938 | 939 | 940 | 941 | 942 | 943 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.007 сек.)